ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlem2 GIF version

Theorem acexmidlem2 5850
Description: Lemma for acexmid 5852. This builds on acexmidlem1 5849 by noting that every element of 𝐶 is inhabited.

(Note that 𝑦 is not quite a function in the df-fun 5200 sense because it uses ordered pairs as described in opthreg 4540 rather than df-op 3592).

The set 𝐴 is also found in onsucelsucexmidlem 4513.

(Contributed by Jim Kingdon, 5-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlem2 (∀𝑧𝐶𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣,𝑢   𝜑,𝑥,𝑦,𝑧,𝑤,𝑣,𝑢

Proof of Theorem acexmidlem2
StepHypRef Expression
1 df-ral 2453 . . . . 5 (∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∀𝑤(𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2 19.23v 1876 . . . . 5 (∀𝑤(𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) ↔ (∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
31, 2bitr2i 184 . . . 4 ((∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
4 acexmidlem.c . . . . . . . . 9 𝐶 = {𝐴, 𝐵}
54eleq2i 2237 . . . . . . . 8 (𝑧𝐶𝑧 ∈ {𝐴, 𝐵})
6 vex 2733 . . . . . . . . 9 𝑧 ∈ V
76elpr 3604 . . . . . . . 8 (𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = 𝐴𝑧 = 𝐵))
85, 7bitri 183 . . . . . . 7 (𝑧𝐶 ↔ (𝑧 = 𝐴𝑧 = 𝐵))
9 onsucelsucexmidlem1 4512 . . . . . . . . . . 11 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
10 acexmidlem.a . . . . . . . . . . 11 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
119, 10eleqtrri 2246 . . . . . . . . . 10 ∅ ∈ 𝐴
12 elex2 2746 . . . . . . . . . 10 (∅ ∈ 𝐴 → ∃𝑤 𝑤𝐴)
1311, 12ax-mp 5 . . . . . . . . 9 𝑤 𝑤𝐴
14 eleq2 2234 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
1514exbidv 1818 . . . . . . . . 9 (𝑧 = 𝐴 → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤𝐴))
1613, 15mpbiri 167 . . . . . . . 8 (𝑧 = 𝐴 → ∃𝑤 𝑤𝑧)
17 p0ex 4174 . . . . . . . . . . . . 13 {∅} ∈ V
1817prid2 3690 . . . . . . . . . . . 12 {∅} ∈ {∅, {∅}}
19 eqid 2170 . . . . . . . . . . . . 13 {∅} = {∅}
2019orci 726 . . . . . . . . . . . 12 ({∅} = {∅} ∨ 𝜑)
21 eqeq1 2177 . . . . . . . . . . . . . 14 (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅}))
2221orbi1d 786 . . . . . . . . . . . . 13 (𝑥 = {∅} → ((𝑥 = {∅} ∨ 𝜑) ↔ ({∅} = {∅} ∨ 𝜑)))
2322elrab 2886 . . . . . . . . . . . 12 ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ 𝜑)))
2418, 20, 23mpbir2an 937 . . . . . . . . . . 11 {∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
25 acexmidlem.b . . . . . . . . . . 11 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
2624, 25eleqtrri 2246 . . . . . . . . . 10 {∅} ∈ 𝐵
27 elex2 2746 . . . . . . . . . 10 ({∅} ∈ 𝐵 → ∃𝑤 𝑤𝐵)
2826, 27ax-mp 5 . . . . . . . . 9 𝑤 𝑤𝐵
29 eleq2 2234 . . . . . . . . . 10 (𝑧 = 𝐵 → (𝑤𝑧𝑤𝐵))
3029exbidv 1818 . . . . . . . . 9 (𝑧 = 𝐵 → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤𝐵))
3128, 30mpbiri 167 . . . . . . . 8 (𝑧 = 𝐵 → ∃𝑤 𝑤𝑧)
3216, 31jaoi 711 . . . . . . 7 ((𝑧 = 𝐴𝑧 = 𝐵) → ∃𝑤 𝑤𝑧)
338, 32sylbi 120 . . . . . 6 (𝑧𝐶 → ∃𝑤 𝑤𝑧)
34 pm2.27 40 . . . . . 6 (∃𝑤 𝑤𝑧 → ((∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
3533, 34syl 14 . . . . 5 (𝑧𝐶 → ((∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
3635imp 123 . . . 4 ((𝑧𝐶 ∧ (∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))) → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
373, 36sylan2br 286 . . 3 ((𝑧𝐶 ∧ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
3837ralimiaa 2532 . 2 (∀𝑧𝐶𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
3910, 25, 4acexmidlem1 5849 . 2 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
4038, 39syl 14 1 (∀𝑧𝐶𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  wal 1346   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  ∃!wreu 2450  {crab 2452  c0 3414  {csn 3583  {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-iota 5160  df-riota 5809
This theorem is referenced by:  acexmidlemv  5851
  Copyright terms: Public domain W3C validator