Proof of Theorem acexmidlem2
| Step | Hyp | Ref
| Expression |
| 1 | | df-ral 2480 |
. . . . 5
⊢
(∀𝑤 ∈
𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∀𝑤(𝑤 ∈ 𝑧 → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
| 2 | | 19.23v 1897 |
. . . . 5
⊢
(∀𝑤(𝑤 ∈ 𝑧 → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) ↔ (∃𝑤 𝑤 ∈ 𝑧 → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
| 3 | 1, 2 | bitr2i 185 |
. . . 4
⊢
((∃𝑤 𝑤 ∈ 𝑧 → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) ↔ ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) |
| 4 | | acexmidlem.c |
. . . . . . . . 9
⊢ 𝐶 = {𝐴, 𝐵} |
| 5 | 4 | eleq2i 2263 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ {𝐴, 𝐵}) |
| 6 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
| 7 | 6 | elpr 3643 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = 𝐴 ∨ 𝑧 = 𝐵)) |
| 8 | 5, 7 | bitri 184 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐶 ↔ (𝑧 = 𝐴 ∨ 𝑧 = 𝐵)) |
| 9 | | onsucelsucexmidlem1 4564 |
. . . . . . . . . . 11
⊢ ∅
∈ {𝑥 ∈ {∅,
{∅}} ∣ (𝑥 =
∅ ∨ 𝜑)} |
| 10 | | acexmidlem.a |
. . . . . . . . . . 11
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
| 11 | 9, 10 | eleqtrri 2272 |
. . . . . . . . . 10
⊢ ∅
∈ 𝐴 |
| 12 | | elex2 2779 |
. . . . . . . . . 10
⊢ (∅
∈ 𝐴 →
∃𝑤 𝑤 ∈ 𝐴) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . 9
⊢
∃𝑤 𝑤 ∈ 𝐴 |
| 14 | | eleq2 2260 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐴 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝐴)) |
| 15 | 14 | exbidv 1839 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ 𝐴)) |
| 16 | 13, 15 | mpbiri 168 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → ∃𝑤 𝑤 ∈ 𝑧) |
| 17 | | p0ex 4221 |
. . . . . . . . . . . . 13
⊢ {∅}
∈ V |
| 18 | 17 | prid2 3729 |
. . . . . . . . . . . 12
⊢ {∅}
∈ {∅, {∅}} |
| 19 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢ {∅}
= {∅} |
| 20 | 19 | orci 732 |
. . . . . . . . . . . 12
⊢
({∅} = {∅} ∨ 𝜑) |
| 21 | | eqeq1 2203 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} =
{∅})) |
| 22 | 21 | orbi1d 792 |
. . . . . . . . . . . . 13
⊢ (𝑥 = {∅} → ((𝑥 = {∅} ∨ 𝜑) ↔ ({∅} = {∅}
∨ 𝜑))) |
| 23 | 22 | elrab 2920 |
. . . . . . . . . . . 12
⊢
({∅} ∈ {𝑥
∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ ({∅} ∈ {∅,
{∅}} ∧ ({∅} = {∅} ∨ 𝜑))) |
| 24 | 18, 20, 23 | mpbir2an 944 |
. . . . . . . . . . 11
⊢ {∅}
∈ {𝑥 ∈ {∅,
{∅}} ∣ (𝑥 =
{∅} ∨ 𝜑)} |
| 25 | | acexmidlem.b |
. . . . . . . . . . 11
⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
| 26 | 24, 25 | eleqtrri 2272 |
. . . . . . . . . 10
⊢ {∅}
∈ 𝐵 |
| 27 | | elex2 2779 |
. . . . . . . . . 10
⊢
({∅} ∈ 𝐵
→ ∃𝑤 𝑤 ∈ 𝐵) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . . . 9
⊢
∃𝑤 𝑤 ∈ 𝐵 |
| 29 | | eleq2 2260 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐵 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝐵)) |
| 30 | 29 | exbidv 1839 |
. . . . . . . . 9
⊢ (𝑧 = 𝐵 → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ 𝐵)) |
| 31 | 28, 30 | mpbiri 168 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → ∃𝑤 𝑤 ∈ 𝑧) |
| 32 | 16, 31 | jaoi 717 |
. . . . . . 7
⊢ ((𝑧 = 𝐴 ∨ 𝑧 = 𝐵) → ∃𝑤 𝑤 ∈ 𝑧) |
| 33 | 8, 32 | sylbi 121 |
. . . . . 6
⊢ (𝑧 ∈ 𝐶 → ∃𝑤 𝑤 ∈ 𝑧) |
| 34 | | pm2.27 40 |
. . . . . 6
⊢
(∃𝑤 𝑤 ∈ 𝑧 → ((∃𝑤 𝑤 ∈ 𝑧 → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
| 35 | 33, 34 | syl 14 |
. . . . 5
⊢ (𝑧 ∈ 𝐶 → ((∃𝑤 𝑤 ∈ 𝑧 → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
| 36 | 35 | imp 124 |
. . . 4
⊢ ((𝑧 ∈ 𝐶 ∧ (∃𝑤 𝑤 ∈ 𝑧 → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) |
| 37 | 3, 36 | sylan2br 288 |
. . 3
⊢ ((𝑧 ∈ 𝐶 ∧ ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) → ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) |
| 38 | 37 | ralimiaa 2559 |
. 2
⊢
(∀𝑧 ∈
𝐶 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → ∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) |
| 39 | 10, 25, 4 | acexmidlem1 5918 |
. 2
⊢
(∀𝑧 ∈
𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) |
| 40 | 38, 39 | syl 14 |
1
⊢
(∀𝑧 ∈
𝐶 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) |