ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlem2 GIF version

Theorem acexmidlem2 5954
Description: Lemma for acexmid 5956. This builds on acexmidlem1 5953 by noting that every element of 𝐶 is inhabited.

(Note that 𝑦 is not quite a function in the df-fun 5282 sense because it uses ordered pairs as described in opthreg 4612 rather than df-op 3647).

The set 𝐴 is also found in onsucelsucexmidlem 4585.

(Contributed by Jim Kingdon, 5-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlem2 (∀𝑧𝐶𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣,𝑢   𝜑,𝑥,𝑦,𝑧,𝑤,𝑣,𝑢

Proof of Theorem acexmidlem2
StepHypRef Expression
1 df-ral 2490 . . . . 5 (∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∀𝑤(𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2 19.23v 1907 . . . . 5 (∀𝑤(𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) ↔ (∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
31, 2bitr2i 185 . . . 4 ((∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
4 acexmidlem.c . . . . . . . . 9 𝐶 = {𝐴, 𝐵}
54eleq2i 2273 . . . . . . . 8 (𝑧𝐶𝑧 ∈ {𝐴, 𝐵})
6 vex 2776 . . . . . . . . 9 𝑧 ∈ V
76elpr 3659 . . . . . . . 8 (𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = 𝐴𝑧 = 𝐵))
85, 7bitri 184 . . . . . . 7 (𝑧𝐶 ↔ (𝑧 = 𝐴𝑧 = 𝐵))
9 onsucelsucexmidlem1 4584 . . . . . . . . . . 11 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
10 acexmidlem.a . . . . . . . . . . 11 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
119, 10eleqtrri 2282 . . . . . . . . . 10 ∅ ∈ 𝐴
12 elex2 2790 . . . . . . . . . 10 (∅ ∈ 𝐴 → ∃𝑤 𝑤𝐴)
1311, 12ax-mp 5 . . . . . . . . 9 𝑤 𝑤𝐴
14 eleq2 2270 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
1514exbidv 1849 . . . . . . . . 9 (𝑧 = 𝐴 → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤𝐴))
1613, 15mpbiri 168 . . . . . . . 8 (𝑧 = 𝐴 → ∃𝑤 𝑤𝑧)
17 p0ex 4240 . . . . . . . . . . . . 13 {∅} ∈ V
1817prid2 3745 . . . . . . . . . . . 12 {∅} ∈ {∅, {∅}}
19 eqid 2206 . . . . . . . . . . . . 13 {∅} = {∅}
2019orci 733 . . . . . . . . . . . 12 ({∅} = {∅} ∨ 𝜑)
21 eqeq1 2213 . . . . . . . . . . . . . 14 (𝑥 = {∅} → (𝑥 = {∅} ↔ {∅} = {∅}))
2221orbi1d 793 . . . . . . . . . . . . 13 (𝑥 = {∅} → ((𝑥 = {∅} ∨ 𝜑) ↔ ({∅} = {∅} ∨ 𝜑)))
2322elrab 2933 . . . . . . . . . . . 12 ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ ({∅} ∈ {∅, {∅}} ∧ ({∅} = {∅} ∨ 𝜑)))
2418, 20, 23mpbir2an 945 . . . . . . . . . . 11 {∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
25 acexmidlem.b . . . . . . . . . . 11 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
2624, 25eleqtrri 2282 . . . . . . . . . 10 {∅} ∈ 𝐵
27 elex2 2790 . . . . . . . . . 10 ({∅} ∈ 𝐵 → ∃𝑤 𝑤𝐵)
2826, 27ax-mp 5 . . . . . . . . 9 𝑤 𝑤𝐵
29 eleq2 2270 . . . . . . . . . 10 (𝑧 = 𝐵 → (𝑤𝑧𝑤𝐵))
3029exbidv 1849 . . . . . . . . 9 (𝑧 = 𝐵 → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤𝐵))
3128, 30mpbiri 168 . . . . . . . 8 (𝑧 = 𝐵 → ∃𝑤 𝑤𝑧)
3216, 31jaoi 718 . . . . . . 7 ((𝑧 = 𝐴𝑧 = 𝐵) → ∃𝑤 𝑤𝑧)
338, 32sylbi 121 . . . . . 6 (𝑧𝐶 → ∃𝑤 𝑤𝑧)
34 pm2.27 40 . . . . . 6 (∃𝑤 𝑤𝑧 → ((∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
3533, 34syl 14 . . . . 5 (𝑧𝐶 → ((∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
3635imp 124 . . . 4 ((𝑧𝐶 ∧ (∃𝑤 𝑤𝑧 → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))) → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
373, 36sylan2br 288 . . 3 ((𝑧𝐶 ∧ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)) → ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
3837ralimiaa 2569 . 2 (∀𝑧𝐶𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
3910, 25, 4acexmidlem1 5953 . 2 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
4038, 39syl 14 1 (∀𝑧𝐶𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  wal 1371   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  ∃!wreu 2487  {crab 2489  c0 3464  {csn 3638  {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-tr 4151  df-iord 4421  df-on 4423  df-suc 4426  df-iota 5241  df-riota 5912
This theorem is referenced by:  acexmidlemv  5955
  Copyright terms: Public domain W3C validator