ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimia GIF version

Theorem ralimia 2591
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
Hypothesis
Ref Expression
ralimia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralimia (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimia
StepHypRef Expression
1 ralimia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21a2i 11 . 2 ((𝑥𝐴𝜑) → (𝑥𝐴𝜓))
32ralimi2 2590 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495
This theorem depends on definitions:  df-bi 117  df-ral 2513
This theorem is referenced by:  ralimiaa  2592  ralimi  2593  r19.12  2637  rr19.3v  2942  rr19.28v  2943  ffvresb  5797  f1mpt  5894  ixpf  6865  exmidontri2or  7424  peano2nnnn  8036  peano5nnnn  8075  peano5nni  9109  peano2nn  9118  serf0  11858  baspartn  14718  tridceq  16383
  Copyright terms: Public domain W3C validator