ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimia GIF version

Theorem ralimia 2566
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
Hypothesis
Ref Expression
ralimia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralimia (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimia
StepHypRef Expression
1 ralimia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21a2i 11 . 2 ((𝑥𝐴𝜑) → (𝑥𝐴𝜓))
32ralimi2 2565 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471
This theorem depends on definitions:  df-bi 117  df-ral 2488
This theorem is referenced by:  ralimiaa  2567  ralimi  2568  r19.12  2611  rr19.3v  2911  rr19.28v  2912  ffvresb  5737  f1mpt  5830  ixpf  6797  exmidontri2or  7337  peano2nnnn  7948  peano5nnnn  7987  peano5nni  9021  peano2nn  9030  serf0  11582  baspartn  14440  tridceq  15859
  Copyright terms: Public domain W3C validator