Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimia GIF version

Theorem ralimia 2468
 Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
Hypothesis
Ref Expression
ralimia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralimia (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimia
StepHypRef Expression
1 ralimia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21a2i 11 . 2 ((𝑥𝐴𝜑) → (𝑥𝐴𝜓))
32ralimi2 2467 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1463  ∀wral 2391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408 This theorem depends on definitions:  df-bi 116  df-ral 2396 This theorem is referenced by:  ralimiaa  2469  ralimi  2470  r19.12  2513  rr19.3v  2795  rr19.28v  2796  ffvresb  5549  f1mpt  5638  ixpf  6580  peano2nnnn  7625  peano5nnnn  7664  peano5nni  8683  peano2nn  8692  serf0  11072  baspartn  12123
 Copyright terms: Public domain W3C validator