| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralimia | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) | 
| Ref | Expression | 
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | 
| Ref | Expression | 
|---|---|
| ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | a2i 11 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) | 
| 3 | 2 | ralimi2 2557 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 | 
| This theorem is referenced by: ralimiaa 2559 ralimi 2560 r19.12 2603 rr19.3v 2903 rr19.28v 2904 ffvresb 5725 f1mpt 5818 ixpf 6779 exmidontri2or 7310 peano2nnnn 7920 peano5nnnn 7959 peano5nni 8993 peano2nn 9002 serf0 11517 baspartn 14286 tridceq 15700 | 
| Copyright terms: Public domain | W3C validator |