ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptelixpg GIF version

Theorem mptelixpg 6802
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
Assertion
Ref Expression
mptelixpg (𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
Distinct variable group:   𝑥,𝐼
Allowed substitution hints:   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem mptelixpg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 2774 . 2 (𝐼𝑉𝐼 ∈ V)
2 nfcv 2339 . . . . . 6 𝑦𝐾
3 nfcsb1v 3117 . . . . . 6 𝑥𝑦 / 𝑥𝐾
4 csbeq1a 3093 . . . . . 6 (𝑥 = 𝑦𝐾 = 𝑦 / 𝑥𝐾)
52, 3, 4cbvixp 6783 . . . . 5 X𝑥𝐼 𝐾 = X𝑦𝐼 𝑦 / 𝑥𝐾
65eleq2i 2263 . . . 4 ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ (𝑥𝐼𝐽) ∈ X𝑦𝐼 𝑦 / 𝑥𝐾)
7 elixp2 6770 . . . 4 ((𝑥𝐼𝐽) ∈ X𝑦𝐼 𝑦 / 𝑥𝐾 ↔ ((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
8 3anass 984 . . . 4 (((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾) ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)))
96, 7, 83bitri 206 . . 3 ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)))
10 eqid 2196 . . . . . . . 8 (𝑥𝐼𝐽) = (𝑥𝐼𝐽)
1110fnmpt 5387 . . . . . . 7 (∀𝑥𝐼 𝐽𝐾 → (𝑥𝐼𝐽) Fn 𝐼)
1210fvmpt2 5648 . . . . . . . . 9 ((𝑥𝐼𝐽𝐾) → ((𝑥𝐼𝐽)‘𝑥) = 𝐽)
13 simpr 110 . . . . . . . . 9 ((𝑥𝐼𝐽𝐾) → 𝐽𝐾)
1412, 13eqeltrd 2273 . . . . . . . 8 ((𝑥𝐼𝐽𝐾) → ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾)
1514ralimiaa 2559 . . . . . . 7 (∀𝑥𝐼 𝐽𝐾 → ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾)
1611, 15jca 306 . . . . . 6 (∀𝑥𝐼 𝐽𝐾 → ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾))
17 dffn2 5412 . . . . . . . 8 ((𝑥𝐼𝐽) Fn 𝐼 ↔ (𝑥𝐼𝐽):𝐼⟶V)
1810fmpt 5715 . . . . . . . . 9 (∀𝑥𝐼 𝐽 ∈ V ↔ (𝑥𝐼𝐽):𝐼⟶V)
1910fvmpt2 5648 . . . . . . . . . . . . 13 ((𝑥𝐼𝐽 ∈ V) → ((𝑥𝐼𝐽)‘𝑥) = 𝐽)
2019eleq1d 2265 . . . . . . . . . . . 12 ((𝑥𝐼𝐽 ∈ V) → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
2120biimpd 144 . . . . . . . . . . 11 ((𝑥𝐼𝐽 ∈ V) → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
2221ralimiaa 2559 . . . . . . . . . 10 (∀𝑥𝐼 𝐽 ∈ V → ∀𝑥𝐼 (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
23 ralim 2556 . . . . . . . . . 10 (∀𝑥𝐼 (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾) → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2422, 23syl 14 . . . . . . . . 9 (∀𝑥𝐼 𝐽 ∈ V → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2518, 24sylbir 135 . . . . . . . 8 ((𝑥𝐼𝐽):𝐼⟶V → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2617, 25sylbi 121 . . . . . . 7 ((𝑥𝐼𝐽) Fn 𝐼 → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2726imp 124 . . . . . 6 (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾) → ∀𝑥𝐼 𝐽𝐾)
2816, 27impbii 126 . . . . 5 (∀𝑥𝐼 𝐽𝐾 ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾))
29 nfv 1542 . . . . . . 7 𝑦((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾
30 nffvmpt1 5572 . . . . . . . 8 𝑥((𝑥𝐼𝐽)‘𝑦)
3130, 3nfel 2348 . . . . . . 7 𝑥((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾
32 fveq2 5561 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐼𝐽)‘𝑥) = ((𝑥𝐼𝐽)‘𝑦))
3332, 4eleq12d 2267 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 ↔ ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
3429, 31, 33cbvral 2725 . . . . . 6 (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 ↔ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)
3534anbi2i 457 . . . . 5 (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾) ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
3628, 35bitri 184 . . . 4 (∀𝑥𝐼 𝐽𝐾 ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
37 mptexg 5790 . . . . 5 (𝐼 ∈ V → (𝑥𝐼𝐽) ∈ V)
3837biantrurd 305 . . . 4 (𝐼 ∈ V → (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾) ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))))
3936, 38bitr2id 193 . . 3 (𝐼 ∈ V → (((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)) ↔ ∀𝑥𝐼 𝐽𝐾))
409, 39bitrid 192 . 2 (𝐼 ∈ V → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
411, 40syl 14 1 (𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167  wral 2475  Vcvv 2763  csb 3084  cmpt 4095   Fn wfn 5254  wf 5255  cfv 5259  Xcixp 6766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ixp 6767
This theorem is referenced by:  prdsbasmpt  12982  prdsbasmpt2  12990
  Copyright terms: Public domain W3C validator