ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrnmpt GIF version

Theorem rexrnmpt 5701
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
ralrnmpt.1 𝐹 = (𝑥𝐴𝐵)
ralrnmpt.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
rexrnmpt (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem rexrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21fnmpt 5380 . . . 4 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
3 dfsbcq 2987 . . . . 5 (𝑤 = (𝐹𝑧) → ([𝑤 / 𝑦]𝜓[(𝐹𝑧) / 𝑦]𝜓))
43rexrn 5695 . . . 4 (𝐹 Fn 𝐴 → (∃𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∃𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
52, 4syl 14 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∃𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∃𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
6 nfv 1539 . . . . 5 𝑤𝜓
7 nfsbc1v 3004 . . . . 5 𝑦[𝑤 / 𝑦]𝜓
8 sbceq1a 2995 . . . . 5 (𝑦 = 𝑤 → (𝜓[𝑤 / 𝑦]𝜓))
96, 7, 8cbvrex 2723 . . . 4 (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓)
109bicomi 132 . . 3 (∃𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∃𝑦 ∈ ran 𝐹𝜓)
11 nfmpt1 4122 . . . . . . 7 𝑥(𝑥𝐴𝐵)
121, 11nfcxfr 2333 . . . . . 6 𝑥𝐹
13 nfcv 2336 . . . . . 6 𝑥𝑧
1412, 13nffv 5564 . . . . 5 𝑥(𝐹𝑧)
15 nfv 1539 . . . . 5 𝑥𝜓
1614, 15nfsbc 3006 . . . 4 𝑥[(𝐹𝑧) / 𝑦]𝜓
17 nfv 1539 . . . 4 𝑧[(𝐹𝑥) / 𝑦]𝜓
18 fveq2 5554 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1918sbceq1d 2990 . . . 4 (𝑧 = 𝑥 → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
2016, 17, 19cbvrex 2723 . . 3 (∃𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓 ↔ ∃𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓)
215, 10, 203bitr3g 222 . 2 (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓))
221fvmpt2 5641 . . . . . 6 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
2322sbceq1d 2990 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
24 ralrnmpt.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2524sbcieg 3018 . . . . . 6 (𝐵𝑉 → ([𝐵 / 𝑦]𝜓𝜒))
2625adantl 277 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([𝐵 / 𝑦]𝜓𝜒))
2723, 26bitrd 188 . . . 4 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓𝜒))
2827ralimiaa 2556 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒))
29 pm5.32 453 . . . . . 6 ((𝑥𝐴 → ([(𝐹𝑥) / 𝑦]𝜓𝜒)) ↔ ((𝑥𝐴[(𝐹𝑥) / 𝑦]𝜓) ↔ (𝑥𝐴𝜒)))
3029albii 1481 . . . . 5 (∀𝑥(𝑥𝐴 → ([(𝐹𝑥) / 𝑦]𝜓𝜒)) ↔ ∀𝑥((𝑥𝐴[(𝐹𝑥) / 𝑦]𝜓) ↔ (𝑥𝐴𝜒)))
31 exbi 1615 . . . . 5 (∀𝑥((𝑥𝐴[(𝐹𝑥) / 𝑦]𝜓) ↔ (𝑥𝐴𝜒)) → (∃𝑥(𝑥𝐴[(𝐹𝑥) / 𝑦]𝜓) ↔ ∃𝑥(𝑥𝐴𝜒)))
3230, 31sylbi 121 . . . 4 (∀𝑥(𝑥𝐴 → ([(𝐹𝑥) / 𝑦]𝜓𝜒)) → (∃𝑥(𝑥𝐴[(𝐹𝑥) / 𝑦]𝜓) ↔ ∃𝑥(𝑥𝐴𝜒)))
33 df-ral 2477 . . . 4 (∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒) ↔ ∀𝑥(𝑥𝐴 → ([(𝐹𝑥) / 𝑦]𝜓𝜒)))
34 df-rex 2478 . . . . 5 (∃𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∃𝑥(𝑥𝐴[(𝐹𝑥) / 𝑦]𝜓))
35 df-rex 2478 . . . . 5 (∃𝑥𝐴 𝜒 ↔ ∃𝑥(𝑥𝐴𝜒))
3634, 35bibi12i 229 . . . 4 ((∃𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∃𝑥𝐴 𝜒) ↔ (∃𝑥(𝑥𝐴[(𝐹𝑥) / 𝑦]𝜓) ↔ ∃𝑥(𝑥𝐴𝜒)))
3732, 33, 363imtr4i 201 . . 3 (∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒) → (∃𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∃𝑥𝐴 𝜒))
3828, 37syl 14 . 2 (∀𝑥𝐴 𝐵𝑉 → (∃𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∃𝑥𝐴 𝜒))
3921, 38bitrd 188 1 (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  [wsbc 2985  cmpt 4090  ran crn 4660   Fn wfn 5249  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  txbas  14426
  Copyright terms: Public domain W3C validator