Step | Hyp | Ref
| Expression |
1 | | ralrnmpt.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
2 | 1 | fnmpt 5314 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
3 | | dfsbcq 2953 |
. . . . 5
⊢ (𝑤 = (𝐹‘𝑧) → ([𝑤 / 𝑦]𝜓 ↔ [(𝐹‘𝑧) / 𝑦]𝜓)) |
4 | 3 | rexrn 5622 |
. . . 4
⊢ (𝐹 Fn 𝐴 → (∃𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∃𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
5 | 2, 4 | syl 14 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → (∃𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∃𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
6 | | nfv 1516 |
. . . . 5
⊢
Ⅎ𝑤𝜓 |
7 | | nfsbc1v 2969 |
. . . . 5
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜓 |
8 | | sbceq1a 2960 |
. . . . 5
⊢ (𝑦 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑦]𝜓)) |
9 | 6, 7, 8 | cbvrex 2689 |
. . . 4
⊢
(∃𝑦 ∈ ran
𝐹𝜓 ↔ ∃𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓) |
10 | 9 | bicomi 131 |
. . 3
⊢
(∃𝑤 ∈ ran
𝐹[𝑤 / 𝑦]𝜓 ↔ ∃𝑦 ∈ ran 𝐹𝜓) |
11 | | nfmpt1 4075 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
12 | 1, 11 | nfcxfr 2305 |
. . . . . 6
⊢
Ⅎ𝑥𝐹 |
13 | | nfcv 2308 |
. . . . . 6
⊢
Ⅎ𝑥𝑧 |
14 | 12, 13 | nffv 5496 |
. . . . 5
⊢
Ⅎ𝑥(𝐹‘𝑧) |
15 | | nfv 1516 |
. . . . 5
⊢
Ⅎ𝑥𝜓 |
16 | 14, 15 | nfsbc 2971 |
. . . 4
⊢
Ⅎ𝑥[(𝐹‘𝑧) / 𝑦]𝜓 |
17 | | nfv 1516 |
. . . 4
⊢
Ⅎ𝑧[(𝐹‘𝑥) / 𝑦]𝜓 |
18 | | fveq2 5486 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
19 | 18 | sbceq1d 2956 |
. . . 4
⊢ (𝑧 = 𝑥 → ([(𝐹‘𝑧) / 𝑦]𝜓 ↔ [(𝐹‘𝑥) / 𝑦]𝜓)) |
20 | 16, 17, 19 | cbvrex 2689 |
. . 3
⊢
(∃𝑧 ∈
𝐴 [(𝐹‘𝑧) / 𝑦]𝜓 ↔ ∃𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓) |
21 | 5, 10, 20 | 3bitr3g 221 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓)) |
22 | 1 | fvmpt2 5569 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝑥) = 𝐵) |
23 | 22 | sbceq1d 2956 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ [𝐵 / 𝑦]𝜓)) |
24 | | ralrnmpt.2 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
25 | 24 | sbcieg 2983 |
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
26 | 25 | adantl 275 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
27 | 23, 26 | bitrd 187 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
28 | 27 | ralimiaa 2528 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
29 | | pm5.32 449 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) ↔ ((𝑥 ∈ 𝐴 ∧ [(𝐹‘𝑥) / 𝑦]𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
30 | 29 | albii 1458 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ [(𝐹‘𝑥) / 𝑦]𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
31 | | exbi 1592 |
. . . . 5
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ [(𝐹‘𝑥) / 𝑦]𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ [(𝐹‘𝑥) / 𝑦]𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
32 | 30, 31 | sylbi 120 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ [(𝐹‘𝑥) / 𝑦]𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
33 | | df-ral 2449 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒))) |
34 | | df-rex 2450 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ [(𝐹‘𝑥) / 𝑦]𝜓)) |
35 | | df-rex 2450 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) |
36 | 34, 35 | bibi12i 228 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ [(𝐹‘𝑥) / 𝑦]𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
37 | 32, 33, 36 | 3imtr4i 200 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒) → (∃𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
38 | 28, 37 | syl 14 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
39 | 21, 38 | bitrd 187 |
1
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |