ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrnmpt GIF version

Theorem ralrnmpt 5494
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
ralrnmpt.1 𝐹 = (𝑥𝐴𝐵)
ralrnmpt.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ralrnmpt (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ralrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21fnmpt 5185 . . . 4 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
3 dfsbcq 2864 . . . . 5 (𝑤 = (𝐹𝑧) → ([𝑤 / 𝑦]𝜓[(𝐹𝑧) / 𝑦]𝜓))
43ralrn 5490 . . . 4 (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
52, 4syl 14 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
6 nfv 1476 . . . . 5 𝑤𝜓
7 nfsbc1v 2880 . . . . 5 𝑦[𝑤 / 𝑦]𝜓
8 sbceq1a 2871 . . . . 5 (𝑦 = 𝑤 → (𝜓[𝑤 / 𝑦]𝜓))
96, 7, 8cbvral 2608 . . . 4 (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓)
109bicomi 131 . . 3 (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓)
11 nfmpt1 3961 . . . . . . 7 𝑥(𝑥𝐴𝐵)
121, 11nfcxfr 2237 . . . . . 6 𝑥𝐹
13 nfcv 2240 . . . . . 6 𝑥𝑧
1412, 13nffv 5363 . . . . 5 𝑥(𝐹𝑧)
15 nfv 1476 . . . . 5 𝑥𝜓
1614, 15nfsbc 2882 . . . 4 𝑥[(𝐹𝑧) / 𝑦]𝜓
17 nfv 1476 . . . 4 𝑧[(𝐹𝑥) / 𝑦]𝜓
18 fveq2 5353 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
19 dfsbcq 2864 . . . . 5 ((𝐹𝑧) = (𝐹𝑥) → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
2018, 19syl 14 . . . 4 (𝑧 = 𝑥 → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
2116, 17, 20cbvral 2608 . . 3 (∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓)
225, 10, 213bitr3g 221 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓))
231fvmpt2 5436 . . . . . 6 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
24 dfsbcq 2864 . . . . . 6 ((𝐹𝑥) = 𝐵 → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
2523, 24syl 14 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
26 ralrnmpt.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2726sbcieg 2893 . . . . . 6 (𝐵𝑉 → ([𝐵 / 𝑦]𝜓𝜒))
2827adantl 273 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([𝐵 / 𝑦]𝜓𝜒))
2925, 28bitrd 187 . . . 4 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓𝜒))
3029ralimiaa 2453 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒))
31 ralbi 2523 . . 3 (∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒) → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3230, 31syl 14 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3322, 32bitrd 187 1 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  wral 2375  [wsbc 2862  cmpt 3929  ran crn 4478   Fn wfn 5054  cfv 5059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-iota 5024  df-fun 5061  df-fn 5062  df-fv 5067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator