ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrnmpt GIF version

Theorem ralrnmpt 5777
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
ralrnmpt.1 𝐹 = (𝑥𝐴𝐵)
ralrnmpt.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ralrnmpt (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ralrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21fnmpt 5450 . . . 4 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
3 dfsbcq 3030 . . . . 5 (𝑤 = (𝐹𝑧) → ([𝑤 / 𝑦]𝜓[(𝐹𝑧) / 𝑦]𝜓))
43ralrn 5773 . . . 4 (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
52, 4syl 14 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
6 nfv 1574 . . . . 5 𝑤𝜓
7 nfsbc1v 3047 . . . . 5 𝑦[𝑤 / 𝑦]𝜓
8 sbceq1a 3038 . . . . 5 (𝑦 = 𝑤 → (𝜓[𝑤 / 𝑦]𝜓))
96, 7, 8cbvral 2761 . . . 4 (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓)
109bicomi 132 . . 3 (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓)
11 nfmpt1 4177 . . . . . . 7 𝑥(𝑥𝐴𝐵)
121, 11nfcxfr 2369 . . . . . 6 𝑥𝐹
13 nfcv 2372 . . . . . 6 𝑥𝑧
1412, 13nffv 5637 . . . . 5 𝑥(𝐹𝑧)
15 nfv 1574 . . . . 5 𝑥𝜓
1614, 15nfsbc 3049 . . . 4 𝑥[(𝐹𝑧) / 𝑦]𝜓
17 nfv 1574 . . . 4 𝑧[(𝐹𝑥) / 𝑦]𝜓
18 fveq2 5627 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
19 dfsbcq 3030 . . . . 5 ((𝐹𝑧) = (𝐹𝑥) → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
2018, 19syl 14 . . . 4 (𝑧 = 𝑥 → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
2116, 17, 20cbvral 2761 . . 3 (∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓)
225, 10, 213bitr3g 222 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓))
231fvmpt2 5718 . . . . . 6 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
24 dfsbcq 3030 . . . . . 6 ((𝐹𝑥) = 𝐵 → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
2523, 24syl 14 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
26 ralrnmpt.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2726sbcieg 3061 . . . . . 6 (𝐵𝑉 → ([𝐵 / 𝑦]𝜓𝜒))
2827adantl 277 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([𝐵 / 𝑦]𝜓𝜒))
2925, 28bitrd 188 . . . 4 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓𝜒))
3029ralimiaa 2592 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒))
31 ralbi 2663 . . 3 (∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒) → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3230, 31syl 14 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3322, 32bitrd 188 1 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  [wsbc 3028  cmpt 4145  ran crn 4720   Fn wfn 5313  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator