![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbida | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) |
Ref | Expression |
---|---|
ralbida.1 | ⊢ Ⅎ𝑥𝜑 |
ralbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbida | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | pm5.32da 452 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | 1, 3 | exbid 1616 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
5 | df-rex 2461 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
6 | df-rex 2461 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1460 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-rex 2461 |
This theorem is referenced by: rexbidva 2474 rexbid 2476 rexbi 2610 dfiun2g 3920 fun11iun 5484 ismkvnex 7156 mkvprop 7159 |
Copyright terms: Public domain | W3C validator |