| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfra1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfra1 | ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | nfa1 1564 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 ∈ 𝐴 → 𝜑) | |
| 3 | 1, 2 | nfxfr 1497 | 1 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1483 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: nfra2xy 2548 r19.12 2612 ralbi 2638 rexbi 2639 nfss 3186 ralidm 3561 nfii1 3958 dfiun2g 3959 mpteq12f 4125 reusv1 4506 ralxfrALT 4515 peano2 4644 fun11iun 5545 fvmptssdm 5666 ffnfv 5740 riota5f 5926 mpoeq123 6006 tfri3 6455 nfixp1 6807 nneneq 6956 exmidomni 7246 mkvprop 7262 caucvgsrlemgt1 7910 suplocsrlem 7923 lble 9022 indstr 9716 zsupcllemstep 10374 nninfinf 10590 fimaxre2 11571 prodeq2 11901 bezoutlemmain 12352 bezoutlemzz 12356 exmidunben 12830 mulcncf 15113 limccnp2cntop 15182 bj-rspgt 15759 isomninnlem 16006 iswomninnlem 16025 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |