Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfra1 | GIF version |
Description: 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfra1 | ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | nfa1 1529 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 ∈ 𝐴 → 𝜑) | |
3 | 1, 2 | nfxfr 1462 | 1 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 |
This theorem is referenced by: nfra2xy 2508 r19.12 2572 ralbi 2598 rexbi 2599 nfss 3135 ralidm 3509 nfii1 3897 dfiun2g 3898 mpteq12f 4062 reusv1 4436 ralxfrALT 4445 peano2 4572 fun11iun 5453 fvmptssdm 5570 ffnfv 5643 riota5f 5822 mpoeq123 5901 tfri3 6335 nfixp1 6684 nneneq 6823 exmidomni 7106 mkvprop 7122 caucvgsrlemgt1 7736 suplocsrlem 7749 lble 8842 indstr 9531 fimaxre2 11168 prodeq2 11498 zsupcllemstep 11878 bezoutlemmain 11931 bezoutlemzz 11935 exmidunben 12359 mulcncf 13231 limccnp2cntop 13286 bj-rspgt 13667 isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |