ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfra1 GIF version

Theorem nfra1 2528
Description: 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfra1 𝑥𝑥𝐴 𝜑

Proof of Theorem nfra1
StepHypRef Expression
1 df-ral 2480 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 nfa1 1555 . 2 𝑥𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1488 1 𝑥𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wnf 1474  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  nfra2xy  2539  r19.12  2603  ralbi  2629  rexbi  2630  nfss  3177  ralidm  3552  nfii1  3948  dfiun2g  3949  mpteq12f  4114  reusv1  4494  ralxfrALT  4503  peano2  4632  fun11iun  5528  fvmptssdm  5649  ffnfv  5723  riota5f  5905  mpoeq123  5985  tfri3  6434  nfixp1  6786  nneneq  6927  exmidomni  7217  mkvprop  7233  caucvgsrlemgt1  7881  suplocsrlem  7894  lble  8993  indstr  9686  zsupcllemstep  10338  nninfinf  10554  fimaxre2  11411  prodeq2  11741  bezoutlemmain  12192  bezoutlemzz  12196  exmidunben  12670  mulcncf  14952  limccnp2cntop  15021  bj-rspgt  15540  isomninnlem  15787  iswomninnlem  15806  ismkvnnlem  15809
  Copyright terms: Public domain W3C validator