| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfra1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfra1 | ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2491 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | nfa1 1565 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 ∈ 𝐴 → 𝜑) | |
| 3 | 1, 2 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 ∈ wcel 2178 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 |
| This theorem is referenced by: nfra2xy 2550 r19.12 2614 ralbi 2640 rexbi 2641 nfss 3194 ralidm 3569 nfii1 3972 dfiun2g 3973 mpteq12f 4140 reusv1 4523 ralxfrALT 4532 peano2 4661 fun11iun 5565 fvmptssdm 5687 ffnfv 5761 riota5f 5947 mpoeq123 6027 tfri3 6476 nfixp1 6828 nneneq 6979 exmidomni 7270 mkvprop 7286 caucvgsrlemgt1 7943 suplocsrlem 7956 lble 9055 indstr 9749 zsupcllemstep 10409 nninfinf 10625 fimaxre2 11653 prodeq2 11983 bezoutlemmain 12434 bezoutlemzz 12438 exmidunben 12912 mulcncf 15195 limccnp2cntop 15264 bj-rspgt 15922 isomninnlem 16171 iswomninnlem 16190 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |