| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfra1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfra1 | ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | nfa1 1564 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 ∈ 𝐴 → 𝜑) | |
| 3 | 1, 2 | nfxfr 1497 | 1 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1483 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: nfra2xy 2548 r19.12 2612 ralbi 2638 rexbi 2639 nfss 3186 ralidm 3561 nfii1 3958 dfiun2g 3959 mpteq12f 4124 reusv1 4505 ralxfrALT 4514 peano2 4643 fun11iun 5543 fvmptssdm 5664 ffnfv 5738 riota5f 5924 mpoeq123 6004 tfri3 6453 nfixp1 6805 nneneq 6954 exmidomni 7244 mkvprop 7260 caucvgsrlemgt1 7908 suplocsrlem 7921 lble 9020 indstr 9714 zsupcllemstep 10372 nninfinf 10588 fimaxre2 11538 prodeq2 11868 bezoutlemmain 12319 bezoutlemzz 12323 exmidunben 12797 mulcncf 15080 limccnp2cntop 15149 bj-rspgt 15722 isomninnlem 15969 iswomninnlem 15988 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |