ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfra1 GIF version

Theorem nfra1 2497
Description: 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfra1 𝑥𝑥𝐴 𝜑

Proof of Theorem nfra1
StepHypRef Expression
1 df-ral 2449 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 nfa1 1529 . 2 𝑥𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1462 1 𝑥𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wnf 1448  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449
This theorem is referenced by:  nfra2xy  2508  r19.12  2572  ralbi  2598  rexbi  2599  nfss  3135  ralidm  3509  nfii1  3897  dfiun2g  3898  mpteq12f  4062  reusv1  4436  ralxfrALT  4445  peano2  4572  fun11iun  5453  fvmptssdm  5570  ffnfv  5643  riota5f  5822  mpoeq123  5901  tfri3  6335  nfixp1  6684  nneneq  6823  exmidomni  7106  mkvprop  7122  caucvgsrlemgt1  7736  suplocsrlem  7749  lble  8842  indstr  9531  fimaxre2  11168  prodeq2  11498  zsupcllemstep  11878  bezoutlemmain  11931  bezoutlemzz  11935  exmidunben  12359  mulcncf  13231  limccnp2cntop  13286  bj-rspgt  13667  isomninnlem  13909  iswomninnlem  13928  ismkvnnlem  13931
  Copyright terms: Public domain W3C validator