ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfra1 GIF version

Theorem nfra1 2508
Description: 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfra1 𝑥𝑥𝐴 𝜑

Proof of Theorem nfra1
StepHypRef Expression
1 df-ral 2460 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 nfa1 1541 . 2 𝑥𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1474 1 𝑥𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wnf 1460  wcel 2148  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-ral 2460
This theorem is referenced by:  nfra2xy  2519  r19.12  2583  ralbi  2609  rexbi  2610  nfss  3148  ralidm  3523  nfii1  3917  dfiun2g  3918  mpteq12f  4083  reusv1  4458  ralxfrALT  4467  peano2  4594  fun11iun  5482  fvmptssdm  5600  ffnfv  5674  riota5f  5854  mpoeq123  5933  tfri3  6367  nfixp1  6717  nneneq  6856  exmidomni  7139  mkvprop  7155  caucvgsrlemgt1  7793  suplocsrlem  7806  lble  8903  indstr  9592  fimaxre2  11234  prodeq2  11564  zsupcllemstep  11945  bezoutlemmain  11998  bezoutlemzz  12002  exmidunben  12426  mulcncf  14061  limccnp2cntop  14116  bj-rspgt  14508  isomninnlem  14748  iswomninnlem  14767  ismkvnnlem  14770
  Copyright terms: Public domain W3C validator