![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfra1 | GIF version |
Description: 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfra1 | ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2460 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | nfa1 1541 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 ∈ 𝐴 → 𝜑) | |
3 | 1, 2 | nfxfr 1474 | 1 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 Ⅎwnf 1460 ∈ wcel 2148 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-ral 2460 |
This theorem is referenced by: nfra2xy 2519 r19.12 2583 ralbi 2609 rexbi 2610 nfss 3148 ralidm 3523 nfii1 3917 dfiun2g 3918 mpteq12f 4083 reusv1 4458 ralxfrALT 4467 peano2 4594 fun11iun 5482 fvmptssdm 5600 ffnfv 5674 riota5f 5854 mpoeq123 5933 tfri3 6367 nfixp1 6717 nneneq 6856 exmidomni 7139 mkvprop 7155 caucvgsrlemgt1 7793 suplocsrlem 7806 lble 8903 indstr 9592 fimaxre2 11234 prodeq2 11564 zsupcllemstep 11945 bezoutlemmain 11998 bezoutlemzz 12002 exmidunben 12426 mulcncf 14061 limccnp2cntop 14116 bj-rspgt 14508 isomninnlem 14748 iswomninnlem 14767 ismkvnnlem 14770 |
Copyright terms: Public domain | W3C validator |