Step | Hyp | Ref
| Expression |
1 | | rngop.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
2 | 1 | rnmpo 5963 |
. . . 4
⊢ ran 𝐹 = {𝑤 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑤 = 𝐶} |
3 | 2 | rexeqi 2670 |
. . 3
⊢
(∃𝑧 ∈ ran
𝐹𝜑 ↔ ∃𝑧 ∈ {𝑤 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑤 = 𝐶}𝜑) |
4 | | eqeq1 2177 |
. . . . 5
⊢ (𝑤 = 𝑧 → (𝑤 = 𝐶 ↔ 𝑧 = 𝐶)) |
5 | 4 | 2rexbidv 2495 |
. . . 4
⊢ (𝑤 = 𝑧 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑤 = 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶)) |
6 | 5 | rexab 2892 |
. . 3
⊢
(∃𝑧 ∈
{𝑤 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑤 = 𝐶}𝜑 ↔ ∃𝑧(∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑)) |
7 | | rexcom4 2753 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑)) |
8 | | r19.41v 2626 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑)) |
9 | 8 | exbii 1598 |
. . . 4
⊢
(∃𝑧∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑧(∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑)) |
10 | 7, 9 | bitr2i 184 |
. . 3
⊢
(∃𝑧(∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 ∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑)) |
11 | 3, 6, 10 | 3bitri 205 |
. 2
⊢
(∃𝑧 ∈ ran
𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑)) |
12 | | rexcom4 2753 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 ∃𝑧(𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑧∃𝑦 ∈ 𝐵 (𝑧 = 𝐶 ∧ 𝜑)) |
13 | | r19.41v 2626 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 (𝑧 = 𝐶 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑)) |
14 | 13 | exbii 1598 |
. . . . . 6
⊢
(∃𝑧∃𝑦 ∈ 𝐵 (𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑)) |
15 | 12, 14 | bitri 183 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 ∃𝑧(𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑)) |
16 | | ralrnmpo.2 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) |
17 | 16 | ceqsexgv 2859 |
. . . . . . 7
⊢ (𝐶 ∈ 𝑉 → (∃𝑧(𝑧 = 𝐶 ∧ 𝜑) ↔ 𝜓)) |
18 | 17 | ralimi 2533 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (∃𝑧(𝑧 = 𝐶 ∧ 𝜑) ↔ 𝜓)) |
19 | | rexbi 2603 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐵 (∃𝑧(𝑧 = 𝐶 ∧ 𝜑) ↔ 𝜓) → (∃𝑦 ∈ 𝐵 ∃𝑧(𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
20 | 18, 19 | syl 14 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → (∃𝑦 ∈ 𝐵 ∃𝑧(𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
21 | 15, 20 | bitr3id 193 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → (∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
22 | 21 | ralimi 2533 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 (∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
23 | | rexbi 2603 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) → (∃𝑥 ∈ 𝐴 ∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) |
24 | 22, 23 | syl 14 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) |
25 | 11, 24 | syl5bb 191 |
1
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) |