ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrnmpo GIF version

Theorem rexrnmpo 5886
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
ralrnmpo.2 (𝑧 = 𝐶 → (𝜑𝜓))
Assertion
Ref Expression
rexrnmpo (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝜓,𝑧   𝑥,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rexrnmpo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21rnmpo 5881 . . . 4 ran 𝐹 = {𝑤 ∣ ∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶}
32rexeqi 2631 . . 3 (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑧 ∈ {𝑤 ∣ ∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶}𝜑)
4 eqeq1 2146 . . . . 5 (𝑤 = 𝑧 → (𝑤 = 𝐶𝑧 = 𝐶))
542rexbidv 2460 . . . 4 (𝑤 = 𝑧 → (∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶))
65rexab 2846 . . 3 (∃𝑧 ∈ {𝑤 ∣ ∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶}𝜑 ↔ ∃𝑧(∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑))
7 rexcom4 2709 . . . 4 (∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑧𝑥𝐴 (∃𝑦𝐵 𝑧 = 𝐶𝜑))
8 r19.41v 2587 . . . . 5 (∃𝑥𝐴 (∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑))
98exbii 1584 . . . 4 (∃𝑧𝑥𝐴 (∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑧(∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑))
107, 9bitr2i 184 . . 3 (∃𝑧(∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
113, 6, 103bitri 205 . 2 (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
12 rexcom4 2709 . . . . . 6 (∃𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∃𝑧𝑦𝐵 (𝑧 = 𝐶𝜑))
13 r19.41v 2587 . . . . . . 7 (∃𝑦𝐵 (𝑧 = 𝐶𝜑) ↔ (∃𝑦𝐵 𝑧 = 𝐶𝜑))
1413exbii 1584 . . . . . 6 (∃𝑧𝑦𝐵 (𝑧 = 𝐶𝜑) ↔ ∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
1512, 14bitri 183 . . . . 5 (∃𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
16 ralrnmpo.2 . . . . . . . 8 (𝑧 = 𝐶 → (𝜑𝜓))
1716ceqsexgv 2814 . . . . . . 7 (𝐶𝑉 → (∃𝑧(𝑧 = 𝐶𝜑) ↔ 𝜓))
1817ralimi 2495 . . . . . 6 (∀𝑦𝐵 𝐶𝑉 → ∀𝑦𝐵 (∃𝑧(𝑧 = 𝐶𝜑) ↔ 𝜓))
19 rexbi 2565 . . . . . 6 (∀𝑦𝐵 (∃𝑧(𝑧 = 𝐶𝜑) ↔ 𝜓) → (∃𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓))
2018, 19syl 14 . . . . 5 (∀𝑦𝐵 𝐶𝑉 → (∃𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓))
2115, 20syl5bbr 193 . . . 4 (∀𝑦𝐵 𝐶𝑉 → (∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓))
2221ralimi 2495 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴 (∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓))
23 rexbi 2565 . . 3 (∀𝑥𝐴 (∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓) → (∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
2422, 23syl 14 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
2511, 24syl5bb 191 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  {cab 2125  wral 2416  wrex 2417  ran crn 4540  cmpo 5776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-cnv 4547  df-dm 4549  df-rn 4550  df-oprab 5778  df-mpo 5779
This theorem is referenced by:  eltx  12428  txrest  12445  txlm  12448
  Copyright terms: Public domain W3C validator