![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralbi | GIF version |
Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.) |
Ref | Expression |
---|---|
ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2508 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) | |
2 | rsp 2524 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓))) | |
3 | 2 | imp 124 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
4 | 1, 3 | ralbida 2471 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2148 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-ral 2460 |
This theorem is referenced by: uniiunlem 3246 iineq2 3905 ralrnmpt 5660 f1mpt 5774 mpo2eqb 5986 ralrnmpo 5991 cau3lem 11125 |
Copyright terms: Public domain | W3C validator |