![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralbi | GIF version |
Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.) |
Ref | Expression |
---|---|
ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2409 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) | |
2 | rsp 2423 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓))) | |
3 | 2 | imp 122 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
4 | 1, 3 | ralbida 2374 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∈ wcel 1438 ∀wral 2359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-4 1445 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-ral 2364 |
This theorem is referenced by: uniiunlem 3109 iineq2 3747 ralrnmpt 5441 f1mpt 5550 mpt22eqb 5754 ralrnmpt2 5759 cau3lem 10543 |
Copyright terms: Public domain | W3C validator |