ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbi GIF version

Theorem ralbi 2602
Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.)
Assertion
Ref Expression
ralbi (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓))

Proof of Theorem ralbi
StepHypRef Expression
1 nfra1 2501 . 2 𝑥𝑥𝐴 (𝜑𝜓)
2 rsp 2517 . . 3 (∀𝑥𝐴 (𝜑𝜓) → (𝑥𝐴 → (𝜑𝜓)))
32imp 123 . 2 ((∀𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
41, 3ralbida 2464 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2141  wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453
This theorem is referenced by:  uniiunlem  3236  iineq2  3888  ralrnmpt  5635  f1mpt  5747  mpo2eqb  5959  ralrnmpo  5964  cau3lem  11065
  Copyright terms: Public domain W3C validator