| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbi | GIF version | ||
| Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2536 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) | |
| 2 | rsp 2552 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓))) | |
| 3 | 2 | imp 124 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ralbida 2499 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 |
| This theorem is referenced by: uniiunlem 3281 iineq2 3943 ralrnmpt 5721 f1mpt 5839 mpo2eqb 6054 ralrnmpo 6059 cau3lem 11367 |
| Copyright terms: Public domain | W3C validator |