| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralbiia | GIF version | ||
| Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) | 
| Ref | Expression | 
|---|---|
| ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 180 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) | 
| 3 | 2 | ralbii2 2507 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ∀wral 2475 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 | 
| This theorem is referenced by: frind 4387 poinxp 4732 soinxp 4733 seinxp 4734 dffun8 5286 funcnv3 5320 fncnv 5324 fnres 5374 fvreseq 5665 isoini2 5866 smores 6350 resixp 6792 pw1dc1 6975 finomni 7206 caucvgre 11146 xpscf 12990 mpodvdsmulf1o 15226 bj-charfundcALT 15455 cndcap 15703 | 
| Copyright terms: Public domain | W3C validator |