ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbiia GIF version

Theorem ralbiia 2511
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
Hypothesis
Ref Expression
ralbiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralbiia (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓)

Proof of Theorem ralbiia
StepHypRef Expression
1 ralbiia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21pm5.74i 180 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32ralbii2 2507 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463
This theorem depends on definitions:  df-bi 117  df-ral 2480
This theorem is referenced by:  frind  4388  poinxp  4733  soinxp  4734  seinxp  4735  dffun8  5287  funcnv3  5321  fncnv  5325  fnres  5377  fvreseq  5668  isoini2  5869  smores  6359  resixp  6801  pw1dc1  6984  finomni  7215  caucvgre  11163  xpscf  13049  mpodvdsmulf1o  15310  bj-charfundcALT  15539  cndcap  15790
  Copyright terms: Public domain W3C validator