ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbiia GIF version

Theorem ralbiia 2423
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
Hypothesis
Ref Expression
ralbiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralbiia (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓)

Proof of Theorem ralbiia
StepHypRef Expression
1 ralbiia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21pm5.74i 179 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32ralbii2 2419 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1463  wral 2390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408
This theorem depends on definitions:  df-bi 116  df-ral 2395
This theorem is referenced by:  frind  4234  poinxp  4568  soinxp  4569  seinxp  4570  dffun8  5109  funcnv3  5143  fncnv  5147  fnres  5197  fvreseq  5478  isoini2  5674  smores  6143  resixp  6581  finomni  6962  caucvgre  10645
  Copyright terms: Public domain W3C validator