Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impr | GIF version |
Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 255 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: reximddv2 2571 moi2 2907 preq12bg 3753 ordsuc 4540 f1ocnv2d 6042 supisoti 6975 caucvgsrlemoffres 7741 prodge0 8749 un0addcl 9147 un0mulcl 9148 peano2uz2 9298 elfz2nn0 10047 fzind2 10174 expaddzap 10499 expmulzap 10501 cau3lem 11056 climuni 11234 climrecvg1n 11289 fisumcom2 11379 fprodcom2fi 11567 dvdsval2 11730 algcvga 11983 lcmgcdlem 12009 divgcdcoprmex 12034 prmpwdvds 12285 epttop 12730 cncnp 12870 cnconst 12874 bl2in 13043 metcnpi 13155 metcnpi2 13156 metcnpi3 13157 |
Copyright terms: Public domain | W3C validator |