Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impr | GIF version |
Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 255 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: reximddv2 2559 moi2 2889 preq12bg 3732 ordsuc 4516 f1ocnv2d 6014 supisoti 6942 caucvgsrlemoffres 7699 prodge0 8704 un0addcl 9102 un0mulcl 9103 peano2uz2 9250 elfz2nn0 9992 fzind2 10116 expaddzap 10441 expmulzap 10443 cau3lem 10991 climuni 11167 climrecvg1n 11222 fisumcom2 11312 fprodcom2fi 11500 dvdsval2 11663 algcvga 11899 lcmgcdlem 11925 divgcdcoprmex 11950 epttop 12429 cncnp 12569 cnconst 12573 bl2in 12742 metcnpi 12854 metcnpi2 12855 metcnpi3 12856 |
Copyright terms: Public domain | W3C validator |