| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impr | GIF version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reximddv2 2611 moi2 2954 preq12bg 3814 ordsuc 4611 f1ocnv2d 6150 supisoti 7112 caucvgsrlemoffres 7913 prodge0 8927 un0addcl 9328 un0mulcl 9329 peano2uz2 9480 elfz2nn0 10234 fzind2 10368 expaddzap 10728 expmulzap 10730 cau3lem 11425 climuni 11604 climrecvg1n 11659 fisumcom2 11749 fprodcom2fi 11937 dvdsval2 12101 algcvga 12373 lcmgcdlem 12399 divgcdcoprmex 12424 prmpwdvds 12678 isgrpinv 13386 dvdsrcl2 13861 islss4 14144 lspsnel6 14170 epttop 14562 cncnp 14702 cnconst 14706 bl2in 14875 metcnpi 14987 metcnpi2 14988 metcnpi3 14989 perfect 15473 lgsquad2 15560 |
| Copyright terms: Public domain | W3C validator |