| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impr | GIF version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reximddv2 2602 moi2 2945 preq12bg 3804 ordsuc 4600 f1ocnv2d 6131 supisoti 7085 caucvgsrlemoffres 7886 prodge0 8900 un0addcl 9301 un0mulcl 9302 peano2uz2 9452 elfz2nn0 10206 fzind2 10334 expaddzap 10694 expmulzap 10696 cau3lem 11298 climuni 11477 climrecvg1n 11532 fisumcom2 11622 fprodcom2fi 11810 dvdsval2 11974 algcvga 12246 lcmgcdlem 12272 divgcdcoprmex 12297 prmpwdvds 12551 isgrpinv 13258 dvdsrcl2 13733 islss4 14016 lspsnel6 14042 epttop 14434 cncnp 14574 cnconst 14578 bl2in 14747 metcnpi 14859 metcnpi2 14860 metcnpi3 14861 perfect 15345 lgsquad2 15432 |
| Copyright terms: Public domain | W3C validator |