Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impr | GIF version |
Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 255 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: reximddv2 2575 moi2 2911 preq12bg 3760 ordsuc 4547 f1ocnv2d 6053 supisoti 6987 caucvgsrlemoffres 7762 prodge0 8770 un0addcl 9168 un0mulcl 9169 peano2uz2 9319 elfz2nn0 10068 fzind2 10195 expaddzap 10520 expmulzap 10522 cau3lem 11078 climuni 11256 climrecvg1n 11311 fisumcom2 11401 fprodcom2fi 11589 dvdsval2 11752 algcvga 12005 lcmgcdlem 12031 divgcdcoprmex 12056 prmpwdvds 12307 isgrpinv 12756 epttop 12884 cncnp 13024 cnconst 13028 bl2in 13197 metcnpi 13309 metcnpi2 13310 metcnpi3 13311 |
Copyright terms: Public domain | W3C validator |