| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impr | GIF version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reximddv2 2602 moi2 2945 preq12bg 3803 ordsuc 4599 f1ocnv2d 6127 supisoti 7076 caucvgsrlemoffres 7867 prodge0 8881 un0addcl 9282 un0mulcl 9283 peano2uz2 9433 elfz2nn0 10187 fzind2 10315 expaddzap 10675 expmulzap 10677 cau3lem 11279 climuni 11458 climrecvg1n 11513 fisumcom2 11603 fprodcom2fi 11791 dvdsval2 11955 algcvga 12219 lcmgcdlem 12245 divgcdcoprmex 12270 prmpwdvds 12524 isgrpinv 13186 dvdsrcl2 13655 islss4 13938 lspsnel6 13964 epttop 14326 cncnp 14466 cnconst 14470 bl2in 14639 metcnpi 14751 metcnpi2 14752 metcnpi3 14753 perfect 15237 lgsquad2 15324 |
| Copyright terms: Public domain | W3C validator |