ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impr GIF version

Theorem impr 379
Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.)
Hypothesis
Ref Expression
impr.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
impr ((𝜑 ∧ (𝜓𝜒)) → 𝜃)

Proof of Theorem impr
StepHypRef Expression
1 impr.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21ex 115 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imp32 257 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  reximddv2  2635  moi2  2984  preq12bg  3851  ordsuc  4655  f1ocnv2d  6210  supisoti  7177  caucvgsrlemoffres  7987  prodge0  9001  un0addcl  9402  un0mulcl  9403  peano2uz2  9554  elfz2nn0  10308  fzind2  10445  expaddzap  10805  expmulzap  10807  swrdswrd  11237  cau3lem  11625  climuni  11804  climrecvg1n  11859  fisumcom2  11949  fprodcom2fi  12137  dvdsval2  12301  algcvga  12573  lcmgcdlem  12599  divgcdcoprmex  12624  prmpwdvds  12878  isgrpinv  13587  dvdsrcl2  14063  islss4  14346  lspsnel6  14372  epttop  14764  cncnp  14904  cnconst  14908  bl2in  15077  metcnpi  15189  metcnpi2  15190  metcnpi3  15191  perfect  15675  lgsquad2  15762
  Copyright terms: Public domain W3C validator