![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impr | GIF version |
Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: reximddv2 2582 moi2 2919 preq12bg 3774 ordsuc 4563 f1ocnv2d 6075 supisoti 7009 caucvgsrlemoffres 7799 prodge0 8811 un0addcl 9209 un0mulcl 9210 peano2uz2 9360 elfz2nn0 10112 fzind2 10239 expaddzap 10564 expmulzap 10566 cau3lem 11123 climuni 11301 climrecvg1n 11356 fisumcom2 11446 fprodcom2fi 11634 dvdsval2 11797 algcvga 12051 lcmgcdlem 12077 divgcdcoprmex 12102 prmpwdvds 12353 isgrpinv 12926 dvdsrcl2 13268 epttop 13593 cncnp 13733 cnconst 13737 bl2in 13906 metcnpi 14018 metcnpi2 14019 metcnpi3 14020 |
Copyright terms: Public domain | W3C validator |