| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impr | GIF version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reximddv2 2611 moi2 2954 preq12bg 3814 ordsuc 4612 f1ocnv2d 6152 supisoti 7114 caucvgsrlemoffres 7915 prodge0 8929 un0addcl 9330 un0mulcl 9331 peano2uz2 9482 elfz2nn0 10236 fzind2 10370 expaddzap 10730 expmulzap 10732 cau3lem 11458 climuni 11637 climrecvg1n 11692 fisumcom2 11782 fprodcom2fi 11970 dvdsval2 12134 algcvga 12406 lcmgcdlem 12432 divgcdcoprmex 12457 prmpwdvds 12711 isgrpinv 13419 dvdsrcl2 13894 islss4 14177 lspsnel6 14203 epttop 14595 cncnp 14735 cnconst 14739 bl2in 14908 metcnpi 15020 metcnpi2 15021 metcnpi3 15022 perfect 15506 lgsquad2 15593 |
| Copyright terms: Public domain | W3C validator |