| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impr | GIF version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reximddv2 2635 moi2 2984 preq12bg 3851 ordsuc 4655 f1ocnv2d 6210 supisoti 7177 caucvgsrlemoffres 7987 prodge0 9001 un0addcl 9402 un0mulcl 9403 peano2uz2 9554 elfz2nn0 10308 fzind2 10445 expaddzap 10805 expmulzap 10807 swrdswrd 11237 cau3lem 11625 climuni 11804 climrecvg1n 11859 fisumcom2 11949 fprodcom2fi 12137 dvdsval2 12301 algcvga 12573 lcmgcdlem 12599 divgcdcoprmex 12624 prmpwdvds 12878 isgrpinv 13587 dvdsrcl2 14063 islss4 14346 lspsnel6 14372 epttop 14764 cncnp 14904 cnconst 14908 bl2in 15077 metcnpi 15189 metcnpi2 15190 metcnpi3 15191 perfect 15675 lgsquad2 15762 |
| Copyright terms: Public domain | W3C validator |