| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impr | GIF version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reximddv2 2613 moi2 2961 preq12bg 3827 ordsuc 4629 f1ocnv2d 6173 supisoti 7138 caucvgsrlemoffres 7948 prodge0 8962 un0addcl 9363 un0mulcl 9364 peano2uz2 9515 elfz2nn0 10269 fzind2 10405 expaddzap 10765 expmulzap 10767 swrdswrd 11196 cau3lem 11540 climuni 11719 climrecvg1n 11774 fisumcom2 11864 fprodcom2fi 12052 dvdsval2 12216 algcvga 12488 lcmgcdlem 12514 divgcdcoprmex 12539 prmpwdvds 12793 isgrpinv 13501 dvdsrcl2 13976 islss4 14259 lspsnel6 14285 epttop 14677 cncnp 14817 cnconst 14821 bl2in 14990 metcnpi 15102 metcnpi2 15103 metcnpi3 15104 perfect 15588 lgsquad2 15675 |
| Copyright terms: Public domain | W3C validator |