ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.12 GIF version

Theorem r19.12 2612
Description: Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.12 (∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem r19.12
StepHypRef Expression
1 nfcv 2348 . . . 4 𝑦𝐴
2 nfra1 2537 . . . 4 𝑦𝑦𝐵 𝜑
31, 2nfrexw 2545 . . 3 𝑦𝑥𝐴𝑦𝐵 𝜑
4 ax-1 6 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 → (𝑦𝐵 → ∃𝑥𝐴𝑦𝐵 𝜑))
53, 4ralrimi 2577 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴𝑦𝐵 𝜑)
6 rsp 2553 . . . . 5 (∀𝑦𝐵 𝜑 → (𝑦𝐵𝜑))
76com12 30 . . . 4 (𝑦𝐵 → (∀𝑦𝐵 𝜑𝜑))
87reximdv 2607 . . 3 (𝑦𝐵 → (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑥𝐴 𝜑))
98ralimia 2567 . 2 (∀𝑦𝐵𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)
105, 9syl 14 1 (∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  wral 2484  wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490
This theorem is referenced by:  iuniin  3937
  Copyright terms: Public domain W3C validator