![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.12 | GIF version |
Description: Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.12 | ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2240 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | nfra1 2425 | . . . 4 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
3 | 1, 2 | nfrexxy 2431 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
4 | ax-1 5 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑)) | |
5 | 3, 4 | ralrimi 2462 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
6 | rsp 2439 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → 𝜑)) | |
7 | 6 | com12 30 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 𝜑 → 𝜑)) |
8 | 7 | reximdv 2492 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
9 | 8 | ralimia 2452 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
10 | 5, 9 | syl 14 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 ∀wral 2375 ∃wrex 2376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-4 1455 ax-17 1474 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 |
This theorem is referenced by: iuniin 3770 |
Copyright terms: Public domain | W3C validator |