| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.12 | GIF version | ||
| Description: Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.12 | ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfra1 2537 | . . . 4 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
| 3 | 1, 2 | nfrexw 2545 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| 4 | ax-1 6 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑)) | |
| 5 | 3, 4 | ralrimi 2577 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
| 6 | rsp 2553 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → 𝜑)) | |
| 7 | 6 | com12 30 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 𝜑 → 𝜑)) |
| 8 | 7 | reximdv 2607 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
| 9 | 8 | ralimia 2567 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| 10 | 5, 9 | syl 14 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: iuniin 3937 |
| Copyright terms: Public domain | W3C validator |