Proof of Theorem cnmpt22
Step | Hyp | Ref
| Expression |
1 | | df-ov 5853 |
. . . 4
⊢ (𝐴(𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)𝐵) = ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉) |
2 | | cnmpt21.j |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
3 | | cnmpt21.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
4 | | txtopon 13015 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
5 | 2, 3, 4 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
6 | | cnmpt22.l |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
7 | | cnmpt21.a |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
8 | | cnf2 12958 |
. . . . . . . . 9
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶𝑍) |
9 | 5, 6, 7, 8 | syl3anc 1233 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶𝑍) |
10 | | eqid 2170 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) |
11 | 10 | fmpo 6177 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶𝑍) |
12 | 9, 11 | sylibr 133 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍) |
13 | | rsp2 2520 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍)) |
14 | 12, 13 | syl 14 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍)) |
15 | 14 | 3impib 1196 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍) |
16 | | cnmpt22.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) |
17 | | cnmpt2t.b |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
18 | | cnf2 12958 |
. . . . . . . . 9
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑀 ∈ (TopOn‘𝑊) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶𝑊) |
19 | 5, 16, 17, 18 | syl3anc 1233 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶𝑊) |
20 | | eqid 2170 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) |
21 | 20 | fmpo 6177 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶𝑊) |
22 | 19, 21 | sylibr 133 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ 𝑊) |
23 | | rsp2 2520 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ 𝑊)) |
24 | 22, 23 | syl 14 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ 𝑊)) |
25 | 24 | 3impib 1196 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ 𝑊) |
26 | 15, 25 | jca 304 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊)) |
27 | | txtopon 13015 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘𝑊)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊))) |
28 | 6, 16, 27 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊))) |
29 | | cnmpt22.c |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
30 | | cntop2 12955 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top) |
31 | 29, 30 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ Top) |
32 | | toptopon2 12770 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) |
33 | 31, 32 | sylib 121 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
34 | | cnf2 12958 |
. . . . . . . . . 10
⊢ (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁)
∧ (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶):(𝑍 × 𝑊)⟶∪ 𝑁) |
35 | 28, 33, 29, 34 | syl3anc 1233 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶):(𝑍 × 𝑊)⟶∪ 𝑁) |
36 | | eqid 2170 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) = (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) |
37 | 36 | fmpo 6177 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑍 ∀𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶):(𝑍 × 𝑊)⟶∪ 𝑁) |
38 | 35, 37 | sylibr 133 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝑍 ∀𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁) |
39 | | r2al 2489 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑍 ∀𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ ∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁)) |
40 | 38, 39 | sylib 121 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁)) |
41 | 40 | 3ad2ant1 1013 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → ∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁)) |
42 | | eleq1 2233 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → (𝑧 ∈ 𝑍 ↔ 𝐴 ∈ 𝑍)) |
43 | | eleq1 2233 |
. . . . . . . . 9
⊢ (𝑤 = 𝐵 → (𝑤 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) |
44 | 42, 43 | bi2anan9 601 |
. . . . . . . 8
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → ((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) ↔ (𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊))) |
45 | | cnmpt22.d |
. . . . . . . . 9
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝐶 = 𝐷) |
46 | 45 | eleq1d 2239 |
. . . . . . . 8
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (𝐶 ∈ ∪ 𝑁 ↔ 𝐷 ∈ ∪ 𝑁)) |
47 | 44, 46 | imbi12d 233 |
. . . . . . 7
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁) ↔ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊) → 𝐷 ∈ ∪ 𝑁))) |
48 | 47 | spc2gv 2821 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤((𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊) → 𝐶 ∈ ∪ 𝑁) → ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊) → 𝐷 ∈ ∪ 𝑁))) |
49 | 26, 41, 26, 48 | syl3c 63 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ ∪ 𝑁) |
50 | 45, 36 | ovmpoga 5979 |
. . . . 5
⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ∧ 𝐷 ∈ ∪ 𝑁) → (𝐴(𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)𝐵) = 𝐷) |
51 | 15, 25, 49, 50 | syl3anc 1233 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴(𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)𝐵) = 𝐷) |
52 | 1, 51 | eqtr3id 2217 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉) = 𝐷) |
53 | 52 | mpoeq3dva 5914 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐷)) |
54 | 2, 3, 7, 17 | cnmpt2t 13046 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀))) |
55 | 2, 3, 54, 29 | cnmpt21f 13045 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶)‘〈𝐴, 𝐵〉)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
56 | 53, 55 | eqeltrrd 2248 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |