ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt22 GIF version

Theorem cnmpt22 12463
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt2t.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
cnmpt22.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt22.m (𝜑𝑀 ∈ (TopOn‘𝑊))
cnmpt22.c (𝜑 → (𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
cnmpt22.d ((𝑧 = 𝐴𝑤 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
cnmpt22 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐵   𝑤,𝐷,𝑧   𝑧,𝐽   𝑥,𝑤,𝑦,𝑧,𝐿   𝜑,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑀,𝑥,𝑦,𝑧   𝑤,𝑁,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧   𝑧,𝐾   𝑤,𝑊,𝑥,𝑦,𝑧   𝑤,𝑍,𝑥,𝑦,𝑧   𝑧,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑧,𝑤)   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑤)   𝐾(𝑥,𝑦,𝑤)

Proof of Theorem cnmpt22
StepHypRef Expression
1 df-ov 5777 . . . 4 (𝐴(𝑧𝑍, 𝑤𝑊𝐶)𝐵) = ((𝑧𝑍, 𝑤𝑊𝐶)‘⟨𝐴, 𝐵⟩)
2 cnmpt21.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmpt21.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 txtopon 12431 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
52, 3, 4syl2anc 408 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
6 cnmpt22.l . . . . . . . . 9 (𝜑𝐿 ∈ (TopOn‘𝑍))
7 cnmpt21.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
8 cnf2 12374 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
95, 6, 7, 8syl3anc 1216 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
10 eqid 2139 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1110fmpo 6099 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
129, 11sylibr 133 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴𝑍)
13 rsp2 2482 . . . . . . 7 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1412, 13syl 14 . . . . . 6 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
15143impib 1179 . . . . 5 ((𝜑𝑥𝑋𝑦𝑌) → 𝐴𝑍)
16 cnmpt22.m . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘𝑊))
17 cnmpt2t.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
18 cnf2 12374 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑀 ∈ (TopOn‘𝑊) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶𝑊)
195, 16, 17, 18syl3anc 1216 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶𝑊)
20 eqid 2139 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
2120fmpo 6099 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵𝑊 ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶𝑊)
2219, 21sylibr 133 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵𝑊)
23 rsp2 2482 . . . . . . 7 (∀𝑥𝑋𝑦𝑌 𝐵𝑊 → ((𝑥𝑋𝑦𝑌) → 𝐵𝑊))
2422, 23syl 14 . . . . . 6 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐵𝑊))
25243impib 1179 . . . . 5 ((𝜑𝑥𝑋𝑦𝑌) → 𝐵𝑊)
2615, 25jca 304 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴𝑍𝐵𝑊))
27 txtopon 12431 . . . . . . . . . . 11 ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘𝑊)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊)))
286, 16, 27syl2anc 408 . . . . . . . . . 10 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊)))
29 cnmpt22.c . . . . . . . . . . . 12 (𝜑 → (𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
30 cntop2 12371 . . . . . . . . . . . 12 ((𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top)
3129, 30syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ Top)
32 toptopon2 12186 . . . . . . . . . . 11 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
3331, 32sylib 121 . . . . . . . . . 10 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
34 cnf2 12374 . . . . . . . . . 10 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ (𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → (𝑧𝑍, 𝑤𝑊𝐶):(𝑍 × 𝑊)⟶ 𝑁)
3528, 33, 29, 34syl3anc 1216 . . . . . . . . 9 (𝜑 → (𝑧𝑍, 𝑤𝑊𝐶):(𝑍 × 𝑊)⟶ 𝑁)
36 eqid 2139 . . . . . . . . . 10 (𝑧𝑍, 𝑤𝑊𝐶) = (𝑧𝑍, 𝑤𝑊𝐶)
3736fmpo 6099 . . . . . . . . 9 (∀𝑧𝑍𝑤𝑊 𝐶 𝑁 ↔ (𝑧𝑍, 𝑤𝑊𝐶):(𝑍 × 𝑊)⟶ 𝑁)
3835, 37sylibr 133 . . . . . . . 8 (𝜑 → ∀𝑧𝑍𝑤𝑊 𝐶 𝑁)
39 r2al 2454 . . . . . . . 8 (∀𝑧𝑍𝑤𝑊 𝐶 𝑁 ↔ ∀𝑧𝑤((𝑧𝑍𝑤𝑊) → 𝐶 𝑁))
4038, 39sylib 121 . . . . . . 7 (𝜑 → ∀𝑧𝑤((𝑧𝑍𝑤𝑊) → 𝐶 𝑁))
41403ad2ant1 1002 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑌) → ∀𝑧𝑤((𝑧𝑍𝑤𝑊) → 𝐶 𝑁))
42 eleq1 2202 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧𝑍𝐴𝑍))
43 eleq1 2202 . . . . . . . . 9 (𝑤 = 𝐵 → (𝑤𝑊𝐵𝑊))
4442, 43bi2anan9 595 . . . . . . . 8 ((𝑧 = 𝐴𝑤 = 𝐵) → ((𝑧𝑍𝑤𝑊) ↔ (𝐴𝑍𝐵𝑊)))
45 cnmpt22.d . . . . . . . . 9 ((𝑧 = 𝐴𝑤 = 𝐵) → 𝐶 = 𝐷)
4645eleq1d 2208 . . . . . . . 8 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝐶 𝑁𝐷 𝑁))
4744, 46imbi12d 233 . . . . . . 7 ((𝑧 = 𝐴𝑤 = 𝐵) → (((𝑧𝑍𝑤𝑊) → 𝐶 𝑁) ↔ ((𝐴𝑍𝐵𝑊) → 𝐷 𝑁)))
4847spc2gv 2776 . . . . . 6 ((𝐴𝑍𝐵𝑊) → (∀𝑧𝑤((𝑧𝑍𝑤𝑊) → 𝐶 𝑁) → ((𝐴𝑍𝐵𝑊) → 𝐷 𝑁)))
4926, 41, 26, 48syl3c 63 . . . . 5 ((𝜑𝑥𝑋𝑦𝑌) → 𝐷 𝑁)
5045, 36ovmpoga 5900 . . . . 5 ((𝐴𝑍𝐵𝑊𝐷 𝑁) → (𝐴(𝑧𝑍, 𝑤𝑊𝐶)𝐵) = 𝐷)
5115, 25, 49, 50syl3anc 1216 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴(𝑧𝑍, 𝑤𝑊𝐶)𝐵) = 𝐷)
521, 51syl5eqr 2186 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → ((𝑧𝑍, 𝑤𝑊𝐶)‘⟨𝐴, 𝐵⟩) = 𝐷)
5352mpoeq3dva 5835 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ((𝑧𝑍, 𝑤𝑊𝐶)‘⟨𝐴, 𝐵⟩)) = (𝑥𝑋, 𝑦𝑌𝐷))
542, 3, 7, 17cnmpt2t 12462 . . 3 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀)))
552, 3, 54, 29cnmpt21f 12461 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ((𝑧𝑍, 𝑤𝑊𝐶)‘⟨𝐴, 𝐵⟩)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
5653, 55eqeltrrd 2217 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962  wal 1329   = wceq 1331  wcel 1480  wral 2416  cop 3530   cuni 3736   × cxp 4537  wf 5119  cfv 5123  (class class class)co 5774  cmpo 5776  Topctop 12164  TopOnctopon 12177   Cn ccn 12354   ×t ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357  df-tx 12422
This theorem is referenced by:  cnmpt22f  12464
  Copyright terms: Public domain W3C validator