ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt22 GIF version

Theorem cnmpt22 12502
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt2t.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
cnmpt22.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt22.m (𝜑𝑀 ∈ (TopOn‘𝑊))
cnmpt22.c (𝜑 → (𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
cnmpt22.d ((𝑧 = 𝐴𝑤 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
cnmpt22 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐵   𝑤,𝐷,𝑧   𝑧,𝐽   𝑥,𝑤,𝑦,𝑧,𝐿   𝜑,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑀,𝑥,𝑦,𝑧   𝑤,𝑁,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧   𝑧,𝐾   𝑤,𝑊,𝑥,𝑦,𝑧   𝑤,𝑍,𝑥,𝑦,𝑧   𝑧,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑧,𝑤)   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑤)   𝐾(𝑥,𝑦,𝑤)

Proof of Theorem cnmpt22
StepHypRef Expression
1 df-ov 5785 . . . 4 (𝐴(𝑧𝑍, 𝑤𝑊𝐶)𝐵) = ((𝑧𝑍, 𝑤𝑊𝐶)‘⟨𝐴, 𝐵⟩)
2 cnmpt21.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmpt21.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 txtopon 12470 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
52, 3, 4syl2anc 409 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
6 cnmpt22.l . . . . . . . . 9 (𝜑𝐿 ∈ (TopOn‘𝑍))
7 cnmpt21.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
8 cnf2 12413 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
95, 6, 7, 8syl3anc 1217 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
10 eqid 2140 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1110fmpo 6107 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
129, 11sylibr 133 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴𝑍)
13 rsp2 2485 . . . . . . 7 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1412, 13syl 14 . . . . . 6 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
15143impib 1180 . . . . 5 ((𝜑𝑥𝑋𝑦𝑌) → 𝐴𝑍)
16 cnmpt22.m . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘𝑊))
17 cnmpt2t.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
18 cnf2 12413 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑀 ∈ (TopOn‘𝑊) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶𝑊)
195, 16, 17, 18syl3anc 1217 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶𝑊)
20 eqid 2140 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
2120fmpo 6107 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵𝑊 ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶𝑊)
2219, 21sylibr 133 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵𝑊)
23 rsp2 2485 . . . . . . 7 (∀𝑥𝑋𝑦𝑌 𝐵𝑊 → ((𝑥𝑋𝑦𝑌) → 𝐵𝑊))
2422, 23syl 14 . . . . . 6 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐵𝑊))
25243impib 1180 . . . . 5 ((𝜑𝑥𝑋𝑦𝑌) → 𝐵𝑊)
2615, 25jca 304 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴𝑍𝐵𝑊))
27 txtopon 12470 . . . . . . . . . . 11 ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘𝑊)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊)))
286, 16, 27syl2anc 409 . . . . . . . . . 10 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊)))
29 cnmpt22.c . . . . . . . . . . . 12 (𝜑 → (𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
30 cntop2 12410 . . . . . . . . . . . 12 ((𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top)
3129, 30syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ Top)
32 toptopon2 12225 . . . . . . . . . . 11 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
3331, 32sylib 121 . . . . . . . . . 10 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
34 cnf2 12413 . . . . . . . . . 10 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑍 × 𝑊)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ (𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → (𝑧𝑍, 𝑤𝑊𝐶):(𝑍 × 𝑊)⟶ 𝑁)
3528, 33, 29, 34syl3anc 1217 . . . . . . . . 9 (𝜑 → (𝑧𝑍, 𝑤𝑊𝐶):(𝑍 × 𝑊)⟶ 𝑁)
36 eqid 2140 . . . . . . . . . 10 (𝑧𝑍, 𝑤𝑊𝐶) = (𝑧𝑍, 𝑤𝑊𝐶)
3736fmpo 6107 . . . . . . . . 9 (∀𝑧𝑍𝑤𝑊 𝐶 𝑁 ↔ (𝑧𝑍, 𝑤𝑊𝐶):(𝑍 × 𝑊)⟶ 𝑁)
3835, 37sylibr 133 . . . . . . . 8 (𝜑 → ∀𝑧𝑍𝑤𝑊 𝐶 𝑁)
39 r2al 2457 . . . . . . . 8 (∀𝑧𝑍𝑤𝑊 𝐶 𝑁 ↔ ∀𝑧𝑤((𝑧𝑍𝑤𝑊) → 𝐶 𝑁))
4038, 39sylib 121 . . . . . . 7 (𝜑 → ∀𝑧𝑤((𝑧𝑍𝑤𝑊) → 𝐶 𝑁))
41403ad2ant1 1003 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑌) → ∀𝑧𝑤((𝑧𝑍𝑤𝑊) → 𝐶 𝑁))
42 eleq1 2203 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧𝑍𝐴𝑍))
43 eleq1 2203 . . . . . . . . 9 (𝑤 = 𝐵 → (𝑤𝑊𝐵𝑊))
4442, 43bi2anan9 596 . . . . . . . 8 ((𝑧 = 𝐴𝑤 = 𝐵) → ((𝑧𝑍𝑤𝑊) ↔ (𝐴𝑍𝐵𝑊)))
45 cnmpt22.d . . . . . . . . 9 ((𝑧 = 𝐴𝑤 = 𝐵) → 𝐶 = 𝐷)
4645eleq1d 2209 . . . . . . . 8 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝐶 𝑁𝐷 𝑁))
4744, 46imbi12d 233 . . . . . . 7 ((𝑧 = 𝐴𝑤 = 𝐵) → (((𝑧𝑍𝑤𝑊) → 𝐶 𝑁) ↔ ((𝐴𝑍𝐵𝑊) → 𝐷 𝑁)))
4847spc2gv 2780 . . . . . 6 ((𝐴𝑍𝐵𝑊) → (∀𝑧𝑤((𝑧𝑍𝑤𝑊) → 𝐶 𝑁) → ((𝐴𝑍𝐵𝑊) → 𝐷 𝑁)))
4926, 41, 26, 48syl3c 63 . . . . 5 ((𝜑𝑥𝑋𝑦𝑌) → 𝐷 𝑁)
5045, 36ovmpoga 5908 . . . . 5 ((𝐴𝑍𝐵𝑊𝐷 𝑁) → (𝐴(𝑧𝑍, 𝑤𝑊𝐶)𝐵) = 𝐷)
5115, 25, 49, 50syl3anc 1217 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴(𝑧𝑍, 𝑤𝑊𝐶)𝐵) = 𝐷)
521, 51syl5eqr 2187 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → ((𝑧𝑍, 𝑤𝑊𝐶)‘⟨𝐴, 𝐵⟩) = 𝐷)
5352mpoeq3dva 5843 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ((𝑧𝑍, 𝑤𝑊𝐶)‘⟨𝐴, 𝐵⟩)) = (𝑥𝑋, 𝑦𝑌𝐷))
542, 3, 7, 17cnmpt2t 12501 . . 3 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀)))
552, 3, 54, 29cnmpt21f 12500 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ((𝑧𝑍, 𝑤𝑊𝐶)‘⟨𝐴, 𝐵⟩)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
5653, 55eqeltrrd 2218 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wal 1330   = wceq 1332  wcel 1481  wral 2417  cop 3535   cuni 3744   × cxp 4545  wf 5127  cfv 5131  (class class class)co 5782  cmpo 5784  Topctop 12203  TopOnctopon 12216   Cn ccn 12393   ×t ctx 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-map 6552  df-topgen 12180  df-top 12204  df-topon 12217  df-bases 12249  df-cn 12396  df-tx 12461
This theorem is referenced by:  cnmpt22f  12503
  Copyright terms: Public domain W3C validator