| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralidm | GIF version | ||
| Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralidm | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2528 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 | |
| 2 | anidm 396 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 3 | rsp2 2547 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 4 | 2, 3 | biimtrrid 153 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| 5 | 1, 4 | ralrimi 2568 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| 6 | ax-1 6 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) | |
| 7 | nfra1 2528 | . . . . 5 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | |
| 8 | 7 | 19.23 1692 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 9 | 6, 8 | sylibr 134 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 10 | df-ral 2480 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) | |
| 11 | 9, 10 | sylibr 134 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑) |
| 12 | 5, 11 | impbii 126 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: issref 5052 cnvpom 5212 |
| Copyright terms: Public domain | W3C validator |