ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rsp2 Unicode version

Theorem rsp2 2507
Description: Restricted specialization. (Contributed by NM, 11-Feb-1997.)
Assertion
Ref Expression
rsp2  |-  ( A. x  e.  A  A. y  e.  B  ph  ->  ( ( x  e.  A  /\  y  e.  B
)  ->  ph ) )

Proof of Theorem rsp2
StepHypRef Expression
1 rsp 2504 . . 3  |-  ( A. x  e.  A  A. y  e.  B  ph  ->  ( x  e.  A  ->  A. y  e.  B  ph ) )
2 rsp 2504 . . 3  |-  ( A. y  e.  B  ph  ->  ( y  e.  B  ->  ph ) )
31, 2syl6 33 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  ->  ( x  e.  A  -> 
( y  e.  B  ->  ph ) ) )
43impd 252 1  |-  ( A. x  e.  A  A. y  e.  B  ph  ->  ( ( x  e.  A  /\  y  e.  B
)  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-4 1490
This theorem depends on definitions:  df-bi 116  df-ral 2440
This theorem is referenced by:  ralidm  3494  sowlin  4279  cnmpt21  12651  cnmpt2t  12653  cnmpt22  12654  cnmptcom  12658
  Copyright terms: Public domain W3C validator