ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt21 GIF version

Theorem cnmpt21 14965
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt21.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt21.b (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
cnmpt21.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt21 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑥,𝑦,𝑧,𝐿   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑧,𝐾   𝑥,𝑍,𝑦,𝑧   𝑥,𝐵,𝑦   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt21
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6004 . . . . . . . . . 10 (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)
2 simprl 529 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝑥𝑋)
3 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝑦𝑌)
4 cnmpt21.j . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ (TopOn‘𝑋))
5 cnmpt21.k . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ (TopOn‘𝑌))
6 txtopon 14936 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
74, 5, 6syl2anc 411 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
8 cnmpt21.l . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ (TopOn‘𝑍))
9 cnmpt21.a . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
10 cnf2 14879 . . . . . . . . . . . . . . 15 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
117, 8, 9, 10syl3anc 1271 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
12 eqid 2229 . . . . . . . . . . . . . . 15 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1312fmpo 6347 . . . . . . . . . . . . . 14 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
1411, 13sylibr 134 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴𝑍)
15 rsp2 2580 . . . . . . . . . . . . 13 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1614, 15syl 14 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1716imp 124 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝐴𝑍)
1812ovmpt4g 6127 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑌𝐴𝑍) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
192, 3, 17, 18syl3anc 1271 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
201, 19eqtr3id 2276 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩) = 𝐴)
2120fveq2d 5631 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)) = ((𝑧𝑍𝐵)‘𝐴))
22 eqid 2229 . . . . . . . . 9 (𝑧𝑍𝐵) = (𝑧𝑍𝐵)
23 cnmpt21.c . . . . . . . . 9 (𝑧 = 𝐴𝐵 = 𝐶)
2423eleq1d 2298 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝐵 𝑀𝐶 𝑀))
25 cnmpt21.b . . . . . . . . . . . . . . 15 (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
26 cntop2 14876 . . . . . . . . . . . . . . 15 ((𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀) → 𝑀 ∈ Top)
2725, 26syl 14 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Top)
28 toptopon2 14693 . . . . . . . . . . . . . 14 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
2927, 28sylib 122 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
30 cnf2 14879 . . . . . . . . . . . . 13 ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘ 𝑀) ∧ (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀)) → (𝑧𝑍𝐵):𝑍 𝑀)
318, 29, 25, 30syl3anc 1271 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑍𝐵):𝑍 𝑀)
3222fmpt 5785 . . . . . . . . . . . 12 (∀𝑧𝑍 𝐵 𝑀 ↔ (𝑧𝑍𝐵):𝑍 𝑀)
3331, 32sylibr 134 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑍 𝐵 𝑀)
3433adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ∀𝑧𝑍 𝐵 𝑀)
3524, 34, 17rspcdva 2912 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝐶 𝑀)
3622, 23, 17, 35fvmptd3 5728 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘𝐴) = 𝐶)
3721, 36eqtrd 2262 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)) = 𝐶)
38 opelxpi 4751 . . . . . . . 8 ((𝑥𝑋𝑦𝑌) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
39 fvco3 5705 . . . . . . . 8 (((𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)))
4011, 38, 39syl2an 289 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)))
41 df-ov 6004 . . . . . . . 8 (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
42 eqid 2229 . . . . . . . . . 10 (𝑥𝑋, 𝑦𝑌𝐶) = (𝑥𝑋, 𝑦𝑌𝐶)
4342ovmpt4g 6127 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌𝐶 𝑀) → (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = 𝐶)
442, 3, 35, 43syl3anc 1271 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = 𝐶)
4541, 44eqtr3id 2276 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) = 𝐶)
4637, 40, 453eqtr4d 2272 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩))
4746ralrimivva 2612 . . . . 5 (𝜑 → ∀𝑥𝑋𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩))
48 nfv 1574 . . . . . 6 𝑢𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
49 nfcv 2372 . . . . . . 7 𝑥𝑌
50 nfcv 2372 . . . . . . . . . 10 𝑥(𝑧𝑍𝐵)
51 nfmpo1 6071 . . . . . . . . . 10 𝑥(𝑥𝑋, 𝑦𝑌𝐴)
5250, 51nfco 4887 . . . . . . . . 9 𝑥((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))
53 nfcv 2372 . . . . . . . . 9 𝑥𝑢, 𝑣
5452, 53nffv 5637 . . . . . . . 8 𝑥(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩)
55 nfmpo1 6071 . . . . . . . . 9 𝑥(𝑥𝑋, 𝑦𝑌𝐶)
5655, 53nffv 5637 . . . . . . . 8 𝑥((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
5754, 56nfeq 2380 . . . . . . 7 𝑥(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
5849, 57nfralxy 2568 . . . . . 6 𝑥𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
59 nfv 1574 . . . . . . . 8 𝑣(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
60 nfcv 2372 . . . . . . . . . . 11 𝑦(𝑧𝑍𝐵)
61 nfmpo2 6072 . . . . . . . . . . 11 𝑦(𝑥𝑋, 𝑦𝑌𝐴)
6260, 61nfco 4887 . . . . . . . . . 10 𝑦((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))
63 nfcv 2372 . . . . . . . . . 10 𝑦𝑥, 𝑣
6462, 63nffv 5637 . . . . . . . . 9 𝑦(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩)
65 nfmpo2 6072 . . . . . . . . . 10 𝑦(𝑥𝑋, 𝑦𝑌𝐶)
6665, 63nffv 5637 . . . . . . . . 9 𝑦((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)
6764, 66nfeq 2380 . . . . . . . 8 𝑦(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)
68 opeq2 3858 . . . . . . . . . 10 (𝑦 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩)
6968fveq2d 5631 . . . . . . . . 9 (𝑦 = 𝑣 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩))
7068fveq2d 5631 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩))
7169, 70eqeq12d 2244 . . . . . . . 8 (𝑦 = 𝑣 → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)))
7259, 67, 71cbvral 2761 . . . . . . 7 (∀𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩))
73 opeq1 3857 . . . . . . . . . 10 (𝑥 = 𝑢 → ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
7473fveq2d 5631 . . . . . . . . 9 (𝑥 = 𝑢 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩))
7573fveq2d 5631 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
7674, 75eqeq12d 2244 . . . . . . . 8 (𝑥 = 𝑢 → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
7776ralbidv 2530 . . . . . . 7 (𝑥 = 𝑢 → (∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
7872, 77bitrid 192 . . . . . 6 (𝑥 = 𝑢 → (∀𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
7948, 58, 78cbvral 2761 . . . . 5 (∀𝑥𝑋𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8047, 79sylib 122 . . . 4 (𝜑 → ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
81 fveq2 5627 . . . . . 6 (𝑤 = ⟨𝑢, 𝑣⟩ → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩))
82 fveq2 5627 . . . . . 6 (𝑤 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8381, 82eqeq12d 2244 . . . . 5 (𝑤 = ⟨𝑢, 𝑣⟩ → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
8483ralxp 4865 . . . 4 (∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) ↔ ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8580, 84sylibr 134 . . 3 (𝜑 → ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤))
86 fco 5489 . . . . . 6 (((𝑧𝑍𝐵):𝑍 𝑀 ∧ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)):(𝑋 × 𝑌)⟶ 𝑀)
8731, 11, 86syl2anc 411 . . . . 5 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)):(𝑋 × 𝑌)⟶ 𝑀)
8887ffnd 5474 . . . 4 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) Fn (𝑋 × 𝑌))
8935ralrimivva 2612 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶 𝑀)
9042fmpo 6347 . . . . . 6 (∀𝑥𝑋𝑦𝑌 𝐶 𝑀 ↔ (𝑥𝑋, 𝑦𝑌𝐶):(𝑋 × 𝑌)⟶ 𝑀)
9189, 90sylib 122 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶):(𝑋 × 𝑌)⟶ 𝑀)
9291ffnd 5474 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) Fn (𝑋 × 𝑌))
93 eqfnfv 5732 . . . 4 ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) Fn (𝑋 × 𝑌) ∧ (𝑥𝑋, 𝑦𝑌𝐶) Fn (𝑋 × 𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤)))
9488, 92, 93syl2anc 411 . . 3 (𝜑 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤)))
9585, 94mpbird 167 . 2 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶))
96 cnco 14895 . . 3 (((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀)) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
979, 25, 96syl2anc 411 . 2 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
9895, 97eqeltrrd 2307 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  cop 3669   cuni 3888  cmpt 4145   × cxp 4717  ccom 4723   Fn wfn 5313  wf 5314  cfv 5318  (class class class)co 6001  cmpo 6003  Topctop 14671  TopOnctopon 14684   Cn ccn 14859   ×t ctx 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-topgen 13293  df-top 14672  df-topon 14685  df-bases 14717  df-cn 14862  df-tx 14927
This theorem is referenced by:  cnmpt21f  14966  divcnap  15239
  Copyright terms: Public domain W3C validator