ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt21 GIF version

Theorem cnmpt21 14459
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt21.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt21.b (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
cnmpt21.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt21 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑥,𝑦,𝑧,𝐿   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑧,𝐾   𝑥,𝑍,𝑦,𝑧   𝑥,𝐵,𝑦   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt21
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5921 . . . . . . . . . 10 (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)
2 simprl 529 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝑥𝑋)
3 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝑦𝑌)
4 cnmpt21.j . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ (TopOn‘𝑋))
5 cnmpt21.k . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ (TopOn‘𝑌))
6 txtopon 14430 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
74, 5, 6syl2anc 411 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
8 cnmpt21.l . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ (TopOn‘𝑍))
9 cnmpt21.a . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
10 cnf2 14373 . . . . . . . . . . . . . . 15 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
117, 8, 9, 10syl3anc 1249 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
12 eqid 2193 . . . . . . . . . . . . . . 15 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1312fmpo 6254 . . . . . . . . . . . . . 14 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
1411, 13sylibr 134 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴𝑍)
15 rsp2 2544 . . . . . . . . . . . . 13 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1614, 15syl 14 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1716imp 124 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝐴𝑍)
1812ovmpt4g 6041 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑌𝐴𝑍) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
192, 3, 17, 18syl3anc 1249 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
201, 19eqtr3id 2240 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩) = 𝐴)
2120fveq2d 5558 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)) = ((𝑧𝑍𝐵)‘𝐴))
22 eqid 2193 . . . . . . . . 9 (𝑧𝑍𝐵) = (𝑧𝑍𝐵)
23 cnmpt21.c . . . . . . . . 9 (𝑧 = 𝐴𝐵 = 𝐶)
2423eleq1d 2262 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝐵 𝑀𝐶 𝑀))
25 cnmpt21.b . . . . . . . . . . . . . . 15 (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
26 cntop2 14370 . . . . . . . . . . . . . . 15 ((𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀) → 𝑀 ∈ Top)
2725, 26syl 14 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Top)
28 toptopon2 14187 . . . . . . . . . . . . . 14 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
2927, 28sylib 122 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
30 cnf2 14373 . . . . . . . . . . . . 13 ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘ 𝑀) ∧ (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀)) → (𝑧𝑍𝐵):𝑍 𝑀)
318, 29, 25, 30syl3anc 1249 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑍𝐵):𝑍 𝑀)
3222fmpt 5708 . . . . . . . . . . . 12 (∀𝑧𝑍 𝐵 𝑀 ↔ (𝑧𝑍𝐵):𝑍 𝑀)
3331, 32sylibr 134 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑍 𝐵 𝑀)
3433adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ∀𝑧𝑍 𝐵 𝑀)
3524, 34, 17rspcdva 2869 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝐶 𝑀)
3622, 23, 17, 35fvmptd3 5651 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘𝐴) = 𝐶)
3721, 36eqtrd 2226 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)) = 𝐶)
38 opelxpi 4691 . . . . . . . 8 ((𝑥𝑋𝑦𝑌) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
39 fvco3 5628 . . . . . . . 8 (((𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)))
4011, 38, 39syl2an 289 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)))
41 df-ov 5921 . . . . . . . 8 (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
42 eqid 2193 . . . . . . . . . 10 (𝑥𝑋, 𝑦𝑌𝐶) = (𝑥𝑋, 𝑦𝑌𝐶)
4342ovmpt4g 6041 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌𝐶 𝑀) → (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = 𝐶)
442, 3, 35, 43syl3anc 1249 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = 𝐶)
4541, 44eqtr3id 2240 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) = 𝐶)
4637, 40, 453eqtr4d 2236 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩))
4746ralrimivva 2576 . . . . 5 (𝜑 → ∀𝑥𝑋𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩))
48 nfv 1539 . . . . . 6 𝑢𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
49 nfcv 2336 . . . . . . 7 𝑥𝑌
50 nfcv 2336 . . . . . . . . . 10 𝑥(𝑧𝑍𝐵)
51 nfmpo1 5985 . . . . . . . . . 10 𝑥(𝑥𝑋, 𝑦𝑌𝐴)
5250, 51nfco 4827 . . . . . . . . 9 𝑥((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))
53 nfcv 2336 . . . . . . . . 9 𝑥𝑢, 𝑣
5452, 53nffv 5564 . . . . . . . 8 𝑥(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩)
55 nfmpo1 5985 . . . . . . . . 9 𝑥(𝑥𝑋, 𝑦𝑌𝐶)
5655, 53nffv 5564 . . . . . . . 8 𝑥((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
5754, 56nfeq 2344 . . . . . . 7 𝑥(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
5849, 57nfralxy 2532 . . . . . 6 𝑥𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
59 nfv 1539 . . . . . . . 8 𝑣(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
60 nfcv 2336 . . . . . . . . . . 11 𝑦(𝑧𝑍𝐵)
61 nfmpo2 5986 . . . . . . . . . . 11 𝑦(𝑥𝑋, 𝑦𝑌𝐴)
6260, 61nfco 4827 . . . . . . . . . 10 𝑦((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))
63 nfcv 2336 . . . . . . . . . 10 𝑦𝑥, 𝑣
6462, 63nffv 5564 . . . . . . . . 9 𝑦(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩)
65 nfmpo2 5986 . . . . . . . . . 10 𝑦(𝑥𝑋, 𝑦𝑌𝐶)
6665, 63nffv 5564 . . . . . . . . 9 𝑦((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)
6764, 66nfeq 2344 . . . . . . . 8 𝑦(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)
68 opeq2 3805 . . . . . . . . . 10 (𝑦 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩)
6968fveq2d 5558 . . . . . . . . 9 (𝑦 = 𝑣 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩))
7068fveq2d 5558 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩))
7169, 70eqeq12d 2208 . . . . . . . 8 (𝑦 = 𝑣 → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)))
7259, 67, 71cbvral 2722 . . . . . . 7 (∀𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩))
73 opeq1 3804 . . . . . . . . . 10 (𝑥 = 𝑢 → ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
7473fveq2d 5558 . . . . . . . . 9 (𝑥 = 𝑢 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩))
7573fveq2d 5558 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
7674, 75eqeq12d 2208 . . . . . . . 8 (𝑥 = 𝑢 → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
7776ralbidv 2494 . . . . . . 7 (𝑥 = 𝑢 → (∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
7872, 77bitrid 192 . . . . . 6 (𝑥 = 𝑢 → (∀𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
7948, 58, 78cbvral 2722 . . . . 5 (∀𝑥𝑋𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8047, 79sylib 122 . . . 4 (𝜑 → ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
81 fveq2 5554 . . . . . 6 (𝑤 = ⟨𝑢, 𝑣⟩ → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩))
82 fveq2 5554 . . . . . 6 (𝑤 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8381, 82eqeq12d 2208 . . . . 5 (𝑤 = ⟨𝑢, 𝑣⟩ → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
8483ralxp 4805 . . . 4 (∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) ↔ ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8580, 84sylibr 134 . . 3 (𝜑 → ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤))
86 fco 5419 . . . . . 6 (((𝑧𝑍𝐵):𝑍 𝑀 ∧ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)):(𝑋 × 𝑌)⟶ 𝑀)
8731, 11, 86syl2anc 411 . . . . 5 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)):(𝑋 × 𝑌)⟶ 𝑀)
8887ffnd 5404 . . . 4 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) Fn (𝑋 × 𝑌))
8935ralrimivva 2576 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶 𝑀)
9042fmpo 6254 . . . . . 6 (∀𝑥𝑋𝑦𝑌 𝐶 𝑀 ↔ (𝑥𝑋, 𝑦𝑌𝐶):(𝑋 × 𝑌)⟶ 𝑀)
9189, 90sylib 122 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶):(𝑋 × 𝑌)⟶ 𝑀)
9291ffnd 5404 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) Fn (𝑋 × 𝑌))
93 eqfnfv 5655 . . . 4 ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) Fn (𝑋 × 𝑌) ∧ (𝑥𝑋, 𝑦𝑌𝐶) Fn (𝑋 × 𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤)))
9488, 92, 93syl2anc 411 . . 3 (𝜑 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤)))
9585, 94mpbird 167 . 2 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶))
96 cnco 14389 . . 3 (((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀)) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
979, 25, 96syl2anc 411 . 2 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
9895, 97eqeltrrd 2271 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  cop 3621   cuni 3835  cmpt 4090   × cxp 4657  ccom 4663   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  cmpo 5920  Topctop 14165  TopOnctopon 14178   Cn ccn 14353   ×t ctx 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211  df-cn 14356  df-tx 14421
This theorem is referenced by:  cnmpt21f  14460  divcnap  14723
  Copyright terms: Public domain W3C validator