ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sowlin GIF version

Theorem sowlin 4298
Description: A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.)
Assertion
Ref Expression
sowlin ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶)))

Proof of Theorem sowlin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3985 . . . . 5 (𝑥 = 𝐵 → (𝑥𝑅𝑦𝐵𝑅𝑦))
2 breq1 3985 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝑧𝐵𝑅𝑧))
32orbi1d 781 . . . . 5 (𝑥 = 𝐵 → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝐵𝑅𝑧𝑧𝑅𝑦)))
41, 3imbi12d 233 . . . 4 (𝑥 = 𝐵 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝐵𝑅𝑦 → (𝐵𝑅𝑧𝑧𝑅𝑦))))
54imbi2d 229 . . 3 (𝑥 = 𝐵 → ((𝑅 Or 𝐴 → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝑦 → (𝐵𝑅𝑧𝑧𝑅𝑦)))))
6 breq2 3986 . . . . 5 (𝑦 = 𝐶 → (𝐵𝑅𝑦𝐵𝑅𝐶))
7 breq2 3986 . . . . . 6 (𝑦 = 𝐶 → (𝑧𝑅𝑦𝑧𝑅𝐶))
87orbi2d 780 . . . . 5 (𝑦 = 𝐶 → ((𝐵𝑅𝑧𝑧𝑅𝑦) ↔ (𝐵𝑅𝑧𝑧𝑅𝐶)))
96, 8imbi12d 233 . . . 4 (𝑦 = 𝐶 → ((𝐵𝑅𝑦 → (𝐵𝑅𝑧𝑧𝑅𝑦)) ↔ (𝐵𝑅𝐶 → (𝐵𝑅𝑧𝑧𝑅𝐶))))
109imbi2d 229 . . 3 (𝑦 = 𝐶 → ((𝑅 Or 𝐴 → (𝐵𝑅𝑦 → (𝐵𝑅𝑧𝑧𝑅𝑦))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝑧𝑧𝑅𝐶)))))
11 breq2 3986 . . . . . 6 (𝑧 = 𝐷 → (𝐵𝑅𝑧𝐵𝑅𝐷))
12 breq1 3985 . . . . . 6 (𝑧 = 𝐷 → (𝑧𝑅𝐶𝐷𝑅𝐶))
1311, 12orbi12d 783 . . . . 5 (𝑧 = 𝐷 → ((𝐵𝑅𝑧𝑧𝑅𝐶) ↔ (𝐵𝑅𝐷𝐷𝑅𝐶)))
1413imbi2d 229 . . . 4 (𝑧 = 𝐷 → ((𝐵𝑅𝐶 → (𝐵𝑅𝑧𝑧𝑅𝐶)) ↔ (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶))))
1514imbi2d 229 . . 3 (𝑧 = 𝐷 → ((𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝑧𝑧𝑅𝐶))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶)))))
16 df-iso 4275 . . . . 5 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
17 3anass 972 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) ↔ (𝑥𝐴 ∧ (𝑦𝐴𝑧𝐴)))
18 rsp 2513 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → (𝑥𝐴 → ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
19 rsp2 2516 . . . . . . . . 9 (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → ((𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2018, 19syl6 33 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → (𝑥𝐴 → ((𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))))
2120impd 252 . . . . . . 7 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → ((𝑥𝐴 ∧ (𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2217, 21syl5bi 151 . . . . . 6 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2322adantl 275 . . . . 5 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2416, 23sylbi 120 . . . 4 (𝑅 Or 𝐴 → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2524com12 30 . . 3 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑅 Or 𝐴 → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
265, 10, 15, 25vtocl3ga 2796 . 2 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶))))
2726impcom 124 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3a 968   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982   Po wpo 4272   Or wor 4273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-iso 4275
This theorem is referenced by:  sotri2  5001  sotri3  5002  suplub2ti  6966  addextpr  7562  cauappcvgprlemloc  7593  caucvgprlemloc  7616  caucvgprprlemloc  7644  caucvgprprlemaddq  7649  ltsosr  7705  suplocsrlem  7749  axpre-ltwlin  7824  xrlelttr  9742  xrltletr  9743  xrletr  9744  xrmaxiflemlub  11189
  Copyright terms: Public domain W3C validator