| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4036 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝐵𝑅𝑦)) |
| 2 | | breq1 4036 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑧 ↔ 𝐵𝑅𝑧)) |
| 3 | 2 | orbi1d 792 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
| 4 | 1, 3 | imbi12d 234 |
. . . 4
⊢ (𝑥 = 𝐵 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝐵𝑅𝑦 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 5 | 4 | imbi2d 230 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝑅 Or 𝐴 → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝑦 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦))))) |
| 6 | | breq2 4037 |
. . . . 5
⊢ (𝑦 = 𝐶 → (𝐵𝑅𝑦 ↔ 𝐵𝑅𝐶)) |
| 7 | | breq2 4037 |
. . . . . 6
⊢ (𝑦 = 𝐶 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝐶)) |
| 8 | 7 | orbi2d 791 |
. . . . 5
⊢ (𝑦 = 𝐶 → ((𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶))) |
| 9 | 6, 8 | imbi12d 234 |
. . . 4
⊢ (𝑦 = 𝐶 → ((𝐵𝑅𝑦 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝐵𝑅𝐶 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶)))) |
| 10 | 9 | imbi2d 230 |
. . 3
⊢ (𝑦 = 𝐶 → ((𝑅 Or 𝐴 → (𝐵𝑅𝑦 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶))))) |
| 11 | | breq2 4037 |
. . . . . 6
⊢ (𝑧 = 𝐷 → (𝐵𝑅𝑧 ↔ 𝐵𝑅𝐷)) |
| 12 | | breq1 4036 |
. . . . . 6
⊢ (𝑧 = 𝐷 → (𝑧𝑅𝐶 ↔ 𝐷𝑅𝐶)) |
| 13 | 11, 12 | orbi12d 794 |
. . . . 5
⊢ (𝑧 = 𝐷 → ((𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶) ↔ (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶))) |
| 14 | 13 | imbi2d 230 |
. . . 4
⊢ (𝑧 = 𝐷 → ((𝐵𝑅𝐶 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶)) ↔ (𝐵𝑅𝐶 → (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶)))) |
| 15 | 14 | imbi2d 230 |
. . 3
⊢ (𝑧 = 𝐷 → ((𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶))))) |
| 16 | | df-iso 4332 |
. . . . 5
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 17 | | 3anass 984 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) |
| 18 | | rsp 2544 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 19 | | rsp2 2547 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 20 | 18, 19 | syl6 33 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))))) |
| 21 | 20 | impd 254 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 22 | 17, 21 | biimtrid 152 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 23 | 22 | adantl 277 |
. . . . 5
⊢ ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 24 | 16, 23 | sylbi 121 |
. . . 4
⊢ (𝑅 Or 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 25 | 24 | com12 30 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑅 Or 𝐴 → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 26 | 5, 10, 15, 25 | vtocl3ga 2834 |
. 2
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶)))) |
| 27 | 26 | impcom 125 |
1
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶))) |