Step | Hyp | Ref
| Expression |
1 | | breq1 3985 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝐵𝑅𝑦)) |
2 | | breq1 3985 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑧 ↔ 𝐵𝑅𝑧)) |
3 | 2 | orbi1d 781 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
4 | 1, 3 | imbi12d 233 |
. . . 4
⊢ (𝑥 = 𝐵 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝐵𝑅𝑦 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
5 | 4 | imbi2d 229 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝑅 Or 𝐴 → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝑦 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦))))) |
6 | | breq2 3986 |
. . . . 5
⊢ (𝑦 = 𝐶 → (𝐵𝑅𝑦 ↔ 𝐵𝑅𝐶)) |
7 | | breq2 3986 |
. . . . . 6
⊢ (𝑦 = 𝐶 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝐶)) |
8 | 7 | orbi2d 780 |
. . . . 5
⊢ (𝑦 = 𝐶 → ((𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶))) |
9 | 6, 8 | imbi12d 233 |
. . . 4
⊢ (𝑦 = 𝐶 → ((𝐵𝑅𝑦 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝐵𝑅𝐶 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶)))) |
10 | 9 | imbi2d 229 |
. . 3
⊢ (𝑦 = 𝐶 → ((𝑅 Or 𝐴 → (𝐵𝑅𝑦 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝑦))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶))))) |
11 | | breq2 3986 |
. . . . . 6
⊢ (𝑧 = 𝐷 → (𝐵𝑅𝑧 ↔ 𝐵𝑅𝐷)) |
12 | | breq1 3985 |
. . . . . 6
⊢ (𝑧 = 𝐷 → (𝑧𝑅𝐶 ↔ 𝐷𝑅𝐶)) |
13 | 11, 12 | orbi12d 783 |
. . . . 5
⊢ (𝑧 = 𝐷 → ((𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶) ↔ (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶))) |
14 | 13 | imbi2d 229 |
. . . 4
⊢ (𝑧 = 𝐷 → ((𝐵𝑅𝐶 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶)) ↔ (𝐵𝑅𝐶 → (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶)))) |
15 | 14 | imbi2d 229 |
. . 3
⊢ (𝑧 = 𝐷 → ((𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝑧 ∨ 𝑧𝑅𝐶))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶))))) |
16 | | df-iso 4275 |
. . . . 5
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
17 | | 3anass 972 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) |
18 | | rsp 2513 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
19 | | rsp2 2516 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
20 | 18, 19 | syl6 33 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))))) |
21 | 20 | impd 252 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
22 | 17, 21 | syl5bi 151 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
23 | 22 | adantl 275 |
. . . . 5
⊢ ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
24 | 16, 23 | sylbi 120 |
. . . 4
⊢ (𝑅 Or 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
25 | 24 | com12 30 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑅 Or 𝐴 → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
26 | 5, 10, 15, 25 | vtocl3ga 2796 |
. 2
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶)))) |
27 | 26 | impcom 124 |
1
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶))) |