ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb4a GIF version

Theorem sb4a 1755
Description: A version of sb4 1786 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
sb4a ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb4a
StepHypRef Expression
1 sb1 1722 . 2 ([𝑦 / 𝑥]∀𝑦𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑))
2 equs5a 1748 . 2 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
31, 2syl 14 1 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1312  wex 1451  [wsb 1718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-gen 1408  ax-ie2 1453  ax-11 1467  ax-ial 1497
This theorem depends on definitions:  df-bi 116  df-sb 1719
This theorem is referenced by:  sb6f  1757  hbsb2a  1760
  Copyright terms: Public domain W3C validator