Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb4a | GIF version |
Description: A version of sb4 1830 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
sb4a | ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1764 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑)) | |
2 | equs5a 1792 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | 1, 2 | syl 14 | 1 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∃wex 1490 [wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-gen 1447 ax-ie2 1492 ax-11 1504 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-sb 1761 |
This theorem is referenced by: sb6f 1801 hbsb2a 1804 |
Copyright terms: Public domain | W3C validator |