ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exdistrfor GIF version

Theorem exdistrfor 1773
Description: Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Jim Kingdon, 25-Feb-2018.)
Hypothesis
Ref Expression
exdistrfor.1 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑)
Assertion
Ref Expression
exdistrfor (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))

Proof of Theorem exdistrfor
StepHypRef Expression
1 exdistrfor.1 . 2 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑)
2 biidd 171 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜓)))
32drex1 1771 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝜑𝜓) ↔ ∃𝑦(𝜑𝜓)))
43drex2 1711 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑥(𝜑𝜓) ↔ ∃𝑥𝑦(𝜑𝜓)))
5 hbe1 1472 . . . . . 6 (∃𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
6519.9h 1623 . . . . 5 (∃𝑥𝑥(𝜑𝜓) ↔ ∃𝑥(𝜑𝜓))
7 19.8a 1570 . . . . . . 7 (𝜓 → ∃𝑦𝜓)
87anim2i 340 . . . . . 6 ((𝜑𝜓) → (𝜑 ∧ ∃𝑦𝜓))
98eximi 1580 . . . . 5 (∃𝑥(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
106, 9sylbi 120 . . . 4 (∃𝑥𝑥(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
114, 10syl6bir 163 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)))
12 ax-ial 1515 . . . 4 (∀𝑥𝑦𝜑 → ∀𝑥𝑥𝑦𝜑)
13 19.40 1611 . . . . . 6 (∃𝑦(𝜑𝜓) → (∃𝑦𝜑 ∧ ∃𝑦𝜓))
14 19.9t 1622 . . . . . . . 8 (Ⅎ𝑦𝜑 → (∃𝑦𝜑𝜑))
1514biimpd 143 . . . . . . 7 (Ⅎ𝑦𝜑 → (∃𝑦𝜑𝜑))
1615anim1d 334 . . . . . 6 (Ⅎ𝑦𝜑 → ((∃𝑦𝜑 ∧ ∃𝑦𝜓) → (𝜑 ∧ ∃𝑦𝜓)))
1713, 16syl5 32 . . . . 5 (Ⅎ𝑦𝜑 → (∃𝑦(𝜑𝜓) → (𝜑 ∧ ∃𝑦𝜓)))
1817sps 1518 . . . 4 (∀𝑥𝑦𝜑 → (∃𝑦(𝜑𝜓) → (𝜑 ∧ ∃𝑦𝜓)))
1912, 18eximdh 1591 . . 3 (∀𝑥𝑦𝜑 → (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)))
2011, 19jaoi 706 . 2 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑) → (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)))
211, 20ax-mp 5 1 (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  wal 1330  wnf 1437  wex 1469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515
This theorem depends on definitions:  df-bi 116  df-nf 1438
This theorem is referenced by:  oprabidlem  5810
  Copyright terms: Public domain W3C validator