ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb4 GIF version

Theorem sb4 1843
Description: One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb4 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem sb4
StepHypRef Expression
1 sb1 1777 . 2 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
2 equs5 1840 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
31, 2syl5 32 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1362  wex 1503  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774
This theorem is referenced by:  sb4b  1845  hbsb2  1847
  Copyright terms: Public domain W3C validator