![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb4 | GIF version |
Description: One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb4 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1777 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | equs5 1840 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
3 | 1, 2 | syl5 32 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1503 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 |
This theorem is referenced by: sb4b 1845 hbsb2 1847 |
Copyright terms: Public domain | W3C validator |