ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb5f GIF version

Theorem sb5f 1826
Description: Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 18-May-2008.)
Hypothesis
Ref Expression
equs45f.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
sb5f ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb5f
StepHypRef Expression
1 equs45f.1 . . 3 (𝜑 → ∀𝑦𝜑)
21sb6f 1825 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
31equs45f 1824 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
42, 3bitr4i 187 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1370  wex 1514  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-11 1528  ax-4 1532  ax-i9 1552  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-sb 1785
This theorem is referenced by:  sbcof2  1832
  Copyright terms: Public domain W3C validator