| Step | Hyp | Ref
| Expression |
| 1 | | sbequ 1854 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → ([𝑤 / 𝑟]𝜑 ↔ [𝑧 / 𝑟]𝜑)) |
| 2 | 1 | anbi2d 464 |
. . . . . 6
⊢ (𝑤 = 𝑧 → ((𝜃 ∧ [𝑤 / 𝑟]𝜑) ↔ (𝜃 ∧ [𝑧 / 𝑟]𝜑))) |
| 3 | | sbequ 1854 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝜓 ↔ [𝑧 / 𝑥]𝜓)) |
| 4 | 3 | anbi1d 465 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (([𝑤 / 𝑥]𝜓 ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) |
| 5 | 4 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑) ↔ ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) |
| 6 | 5 | imbi2d 230 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → (([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) ↔ ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) |
| 7 | 6 | ralbidv 2497 |
. . . . . 6
⊢ (𝑤 = 𝑧 → (∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) ↔ ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) |
| 8 | 2, 7 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = 𝑧 → (((𝜃 ∧ [𝑤 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑))) ↔ ((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))))) |
| 9 | | sbequ 1854 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ([𝑤 / 𝑟]𝜑 ↔ [𝑥 / 𝑟]𝜑)) |
| 10 | 9 | anbi2d 464 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝜃 ∧ [𝑤 / 𝑟]𝜑) ↔ (𝜃 ∧ [𝑥 / 𝑟]𝜑))) |
| 11 | | sbequ12r 1786 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → ([𝑤 / 𝑥]𝜓 ↔ 𝜓)) |
| 12 | 11 | anbi1d 465 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (([𝑤 / 𝑥]𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜑))) |
| 13 | 12 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑) ↔ ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑))) |
| 14 | 13 | imbi2d 230 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) ↔ ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑)))) |
| 15 | 14 | ralbidv 2497 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) ↔ ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑)))) |
| 16 | 10, 15 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = 𝑥 → (((𝜃 ∧ [𝑤 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑))) ↔ ((𝜃 ∧ [𝑥 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑))))) |
| 17 | | nfv 1542 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝑤 ∈
ℕ0 |
| 18 | | nfcv 2339 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(0...(𝑤 − 1)) |
| 19 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝜃 ∧ [𝑧 / 𝑟]𝜑) |
| 20 | | nfra1 2528 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)) |
| 21 | 19, 20 | nfim 1586 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) |
| 22 | 18, 21 | nfralxy 2535 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) |
| 23 | 17, 22 | nfan 1579 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) |
| 24 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝜃 ∧ [𝑤 / 𝑟]𝜑) |
| 25 | 23, 24 | nfan 1579 |
. . . . . . . . 9
⊢
Ⅎ𝑦((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) |
| 26 | | nfv 1542 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑤 = 0 |
| 27 | 25, 26 | nfan 1579 |
. . . . . . . 8
⊢
Ⅎ𝑦(((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 𝑤 = 0) |
| 28 | | simplr 528 |
. . . . . . . . . 10
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 𝑤 = 0) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → 𝑦 ∈ ℕ0) |
| 29 | | nfv 1542 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑟∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑦 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)) |
| 30 | | breq2 4038 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑦 → (𝑧 ∥ 𝑟 ↔ 𝑧 ∥ 𝑦)) |
| 31 | 30 | imbi1d 231 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑦 → ((𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)) ↔ (𝑧 ∥ 𝑦 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)))) |
| 32 | 31 | ralbidv 2497 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑦 → (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑦 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)))) |
| 33 | 29, 32 | sbie 1805 |
. . . . . . . . . . . . 13
⊢ ([𝑦 / 𝑟]∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑦 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦))) |
| 34 | | nn0z 9363 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℤ) |
| 35 | | dvds0 11988 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℤ → 𝑧 ∥ 0) |
| 36 | 34, 35 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∥
0) |
| 37 | 36 | biantrurd 305 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℕ0
→ (𝑧 ∥ 𝑦 ↔ (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦))) |
| 38 | 37 | biimpd 144 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℕ0
→ (𝑧 ∥ 𝑦 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦))) |
| 39 | 33, 38 | mprgbir 2555 |
. . . . . . . . . . . 12
⊢ [𝑦 / 𝑟]∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)) |
| 40 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑟 𝑤 = 0 |
| 41 | | dfsbcq2 2992 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 0 → ([𝑤 / 𝑥]𝜓 ↔ [0 / 𝑥]𝜓)) |
| 42 | | bezout.sub-gcd |
. . . . . . . . . . . . . . . 16
⊢ (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦))) |
| 43 | 42 | sbcbii 3049 |
. . . . . . . . . . . . . . 15
⊢
([0 / 𝑥]𝜓 ↔ [0 / 𝑥]∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦))) |
| 44 | | c0ex 8037 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
| 45 | | breq2 4038 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → (𝑧 ∥ 𝑥 ↔ 𝑧 ∥ 0)) |
| 46 | 45 | anbi1d 465 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → ((𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦) ↔ (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦))) |
| 47 | 46 | imbi2d 230 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 0 → ((𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦)) ↔ (𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)))) |
| 48 | 47 | ralbidv 2497 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 0 → (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)))) |
| 49 | 44, 48 | sbcie 3024 |
. . . . . . . . . . . . . . 15
⊢
([0 / 𝑥]∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦))) |
| 50 | 43, 49 | bitri 184 |
. . . . . . . . . . . . . 14
⊢
([0 / 𝑥]𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦))) |
| 51 | 41, 50 | bitrdi 196 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 0 → ([𝑤 / 𝑥]𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)))) |
| 52 | 40, 51 | sbbid 1860 |
. . . . . . . . . . . 12
⊢ (𝑤 = 0 → ([𝑦 / 𝑟][𝑤 / 𝑥]𝜓 ↔ [𝑦 / 𝑟]∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 0 ∧ 𝑧 ∥ 𝑦)))) |
| 53 | 39, 52 | mpbiri 168 |
. . . . . . . . . . 11
⊢ (𝑤 = 0 → [𝑦 / 𝑟][𝑤 / 𝑥]𝜓) |
| 54 | 53 | ad3antlr 493 |
. . . . . . . . . 10
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 𝑤 = 0) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → [𝑦 / 𝑟][𝑤 / 𝑥]𝜓) |
| 55 | | simpr 110 |
. . . . . . . . . 10
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 𝑤 = 0) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → [𝑦 / 𝑟]𝜑) |
| 56 | | nfs1v 1958 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑟[𝑦 / 𝑟][𝑤 / 𝑥]𝜓 |
| 57 | | nfs1v 1958 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑟[𝑦 / 𝑟]𝜑 |
| 58 | 56, 57 | nfan 1579 |
. . . . . . . . . . 11
⊢
Ⅎ𝑟([𝑦 / 𝑟][𝑤 / 𝑥]𝜓 ∧ [𝑦 / 𝑟]𝜑) |
| 59 | | sbequ12 1785 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑦 → ([𝑤 / 𝑥]𝜓 ↔ [𝑦 / 𝑟][𝑤 / 𝑥]𝜓)) |
| 60 | | sbequ12 1785 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑟]𝜑)) |
| 61 | 59, 60 | anbi12d 473 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑦 → (([𝑤 / 𝑥]𝜓 ∧ 𝜑) ↔ ([𝑦 / 𝑟][𝑤 / 𝑥]𝜓 ∧ [𝑦 / 𝑟]𝜑))) |
| 62 | 58, 61 | rspce 2863 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ([𝑦 / 𝑟][𝑤 / 𝑥]𝜓 ∧ [𝑦 / 𝑟]𝜑)) → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) |
| 63 | 28, 54, 55, 62 | syl12anc 1247 |
. . . . . . . . 9
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 𝑤 = 0) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) |
| 64 | 63 | exp31 364 |
. . . . . . . 8
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 𝑤 = 0) → (𝑦 ∈ ℕ0 → ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)))) |
| 65 | 27, 64 | ralrimi 2568 |
. . . . . . 7
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 𝑤 = 0) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑))) |
| 66 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑦0 < 𝑤 |
| 67 | 25, 66 | nfan 1579 |
. . . . . . . . 9
⊢
Ⅎ𝑦(((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) |
| 68 | | bezout.is-bezout |
. . . . . . . . . . 11
⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 69 | | simplrl 535 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → 𝜃) |
| 70 | | bezout.a |
. . . . . . . . . . . . 13
⊢ (𝜃 → 𝐴 ∈
ℕ0) |
| 71 | 69, 70 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → 𝐴 ∈
ℕ0) |
| 72 | 71 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → 𝐴 ∈
ℕ0) |
| 73 | | bezout.b |
. . . . . . . . . . . . 13
⊢ (𝜃 → 𝐵 ∈
ℕ0) |
| 74 | 69, 73 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → 𝐵 ∈
ℕ0) |
| 75 | 74 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → 𝐵 ∈
ℕ0) |
| 76 | | simplll 533 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → 𝑤 ∈ ℕ0) |
| 77 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → 0 < 𝑤) |
| 78 | | elnnnn0b 9310 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℕ ↔ (𝑤 ∈ ℕ0
∧ 0 < 𝑤)) |
| 79 | 76, 77, 78 | sylanbrc 417 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → 𝑤 ∈ ℕ) |
| 80 | 79 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → 𝑤 ∈ ℕ) |
| 81 | | simpr 110 |
. . . . . . . . . . 11
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → [𝑦 / 𝑟]𝜑) |
| 82 | | simplr 528 |
. . . . . . . . . . 11
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → 𝑦 ∈ ℕ0) |
| 83 | | simplrr 536 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → [𝑤 / 𝑟]𝜑) |
| 84 | | sbsbc 2993 |
. . . . . . . . . . . . 13
⊢ ([𝑤 / 𝑟]𝜑 ↔ [𝑤 / 𝑟]𝜑) |
| 85 | 83, 84 | sylib 122 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → [𝑤 / 𝑟]𝜑) |
| 86 | 85 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → [𝑤 / 𝑟]𝜑) |
| 87 | | breq1 4037 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑎 → (𝑧 ∥ 𝑟 ↔ 𝑎 ∥ 𝑟)) |
| 88 | | breq1 4037 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑎 → (𝑧 ∥ 𝑥 ↔ 𝑎 ∥ 𝑥)) |
| 89 | | breq1 4037 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑎 → (𝑧 ∥ 𝑦 ↔ 𝑎 ∥ 𝑦)) |
| 90 | 88, 89 | anbi12d 473 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑎 → ((𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦) ↔ (𝑎 ∥ 𝑥 ∧ 𝑎 ∥ 𝑦))) |
| 91 | 87, 90 | imbi12d 234 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑎 → ((𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦)) ↔ (𝑎 ∥ 𝑟 → (𝑎 ∥ 𝑥 ∧ 𝑎 ∥ 𝑦)))) |
| 92 | 91 | cbvralv 2729 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
ℕ0 (𝑧
∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦)) ↔ ∀𝑎 ∈ ℕ0 (𝑎 ∥ 𝑟 → (𝑎 ∥ 𝑥 ∧ 𝑎 ∥ 𝑦))) |
| 93 | 42, 92 | bitri 184 |
. . . . . . . . . . 11
⊢ (𝜓 ↔ ∀𝑎 ∈ ℕ0 (𝑎 ∥ 𝑟 → (𝑎 ∥ 𝑥 ∧ 𝑎 ∥ 𝑦))) |
| 94 | 69 | ad3antrrr 492 |
. . . . . . . . . . . . 13
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → 𝜃) |
| 95 | | simpr 110 |
. . . . . . . . . . . . 13
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → [(𝑦 mod 𝑤) / 𝑟]𝜑) |
| 96 | 94, 95 | jca 306 |
. . . . . . . . . . . 12
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → (𝜃 ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑)) |
| 97 | 83 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → [𝑤 / 𝑟]𝜑) |
| 98 | | dfsbcq2 2992 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑦 mod 𝑤) → ([𝑧 / 𝑟]𝜑 ↔ [(𝑦 mod 𝑤) / 𝑟]𝜑)) |
| 99 | 98 | anbi2d 464 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑦 mod 𝑤) → ((𝜃 ∧ [𝑧 / 𝑟]𝜑) ↔ (𝜃 ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑))) |
| 100 | | sbsbc 2993 |
. . . . . . . . . . . . . . . . . . 19
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓) |
| 101 | | sbsbc 2993 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ([𝑤 / 𝑦]𝜓 ↔ [𝑤 / 𝑦]𝜓) |
| 102 | 101 | sbcbii 3049 |
. . . . . . . . . . . . . . . . . . 19
⊢
([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓) |
| 103 | 100, 102 | bitri 184 |
. . . . . . . . . . . . . . . . . 18
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓) |
| 104 | 103 | anbi1i 458 |
. . . . . . . . . . . . . . . . 17
⊢ (([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)) |
| 105 | | dfsbcq 2991 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦 mod 𝑤) → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ [(𝑦 mod 𝑤) / 𝑥][𝑤 / 𝑦]𝜓)) |
| 106 | 105 | anbi1d 465 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦 mod 𝑤) → (([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑) ↔ ([(𝑦 mod 𝑤) / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))) |
| 107 | 104, 106 | bitrid 192 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑦 mod 𝑤) → (([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑) ↔ ([(𝑦 mod 𝑤) / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))) |
| 108 | 107 | rexbidv 2498 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑦 mod 𝑤) → (∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑) ↔ ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑤) / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))) |
| 109 | 108 | imbi2d 230 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑦 mod 𝑤) → (([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)) ↔ ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑤) / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)))) |
| 110 | 99, 109 | imbi12d 234 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑦 mod 𝑤) → (((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))) ↔ ((𝜃 ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑤) / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))))) |
| 111 | | simpll 527 |
. . . . . . . . . . . . . 14
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → (((𝑤 ∈ ℕ0 ∧
∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤)) |
| 112 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) → ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) |
| 113 | 112 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) |
| 114 | | nfv 1542 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑦[𝑤 / 𝑟]𝜑 |
| 115 | | nfcv 2339 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑦ℕ0 |
| 116 | | nfs1v 1958 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜓 |
| 117 | 116 | nfsbxy 1961 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑦[𝑧 / 𝑥][𝑤 / 𝑦]𝜓 |
| 118 | | nfv 1542 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑦𝜑 |
| 119 | 117, 118 | nfan 1579 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑦([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑) |
| 120 | 115, 119 | nfrexw 2536 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑦∃𝑟 ∈ ℕ0
([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑) |
| 121 | 114, 120 | nfim 1586 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)) |
| 122 | | sbequ 1854 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑤 → ([𝑦 / 𝑟]𝜑 ↔ [𝑤 / 𝑟]𝜑)) |
| 123 | | nfv 1542 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑥 𝑦 = 𝑤 |
| 124 | | sbequ12 1785 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑦]𝜓)) |
| 125 | 123, 124 | sbbid 1860 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑤 → ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)) |
| 126 | 125 | anbi1d 465 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑤 → (([𝑧 / 𝑥]𝜓 ∧ 𝜑) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))) |
| 127 | 126 | rexbidv 2498 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑤 → (∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑) ↔ ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))) |
| 128 | 122, 127 | imbi12d 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑤 → (([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)) ↔ ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)))) |
| 129 | 121, 128 | rspc 2862 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℕ0
→ (∀𝑦 ∈
ℕ0 ([𝑦 /
𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)) → ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)))) |
| 130 | 129 | imim2d 54 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ ℕ0
→ (((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) → ((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))))) |
| 131 | 130 | ralimdv 2565 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ℕ0
→ (∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) → ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))))) |
| 132 | 131 | ad4antr 494 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → (∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) → ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑))))) |
| 133 | 113, 132 | mpd 13 |
. . . . . . . . . . . . . 14
⊢
(((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)))) |
| 134 | 111, 133 | sylan 283 |
. . . . . . . . . . . . 13
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)))) |
| 135 | | simpllr 534 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → 𝑦 ∈ ℕ0) |
| 136 | 135 | nn0zd 9463 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → 𝑦 ∈ ℤ) |
| 137 | 79 | ad3antrrr 492 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → 𝑤 ∈ ℕ) |
| 138 | | zmodfz 10455 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝑦 mod 𝑤) ∈ (0...(𝑤 − 1))) |
| 139 | 136, 137,
138 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → (𝑦 mod 𝑤) ∈ (0...(𝑤 − 1))) |
| 140 | 110, 134,
139 | rspcdva 2873 |
. . . . . . . . . . . 12
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → ((𝜃 ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → ([𝑤 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑤) / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)))) |
| 141 | 96, 97, 140 | mp2d 47 |
. . . . . . . . . . 11
⊢
(((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) ∧ [(𝑦 mod 𝑤) / 𝑟]𝜑) → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑤) / 𝑥][𝑤 / 𝑦]𝜓 ∧ 𝜑)) |
| 142 | | nfv 1542 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥 𝑤 ∈
ℕ0 |
| 143 | | nfcv 2339 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(0...(𝑤 − 1)) |
| 144 | | nfv 1542 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝜃 ∧ [𝑧 / 𝑟]𝜑) |
| 145 | | nfcv 2339 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥ℕ0 |
| 146 | | nfv 1542 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥𝜑 |
| 147 | 146 | nfsbxy 1961 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥[𝑦 / 𝑟]𝜑 |
| 148 | | nfs1v 1958 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜓 |
| 149 | 148, 146 | nfan 1579 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝜓 ∧ 𝜑) |
| 150 | 145, 149 | nfrexw 2536 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥∃𝑟 ∈ ℕ0
([𝑧 / 𝑥]𝜓 ∧ 𝜑) |
| 151 | 147, 150 | nfim 1586 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)) |
| 152 | 145, 151 | nfralxy 2535 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)) |
| 153 | 144, 152 | nfim 1586 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) |
| 154 | 143, 153 | nfralxy 2535 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) |
| 155 | 142, 154 | nfan 1579 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) |
| 156 | | nfv 1542 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝜃 ∧ [𝑤 / 𝑟]𝜑) |
| 157 | 155, 156 | nfan 1579 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) |
| 158 | | nfv 1542 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥0 < 𝑤 |
| 159 | 157, 158 | nfan 1579 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) |
| 160 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑦 ∈
ℕ0 |
| 161 | 159, 160 | nfan 1579 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) |
| 162 | 161, 147 | nfan 1579 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) |
| 163 | | nfv 1542 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑟 𝑤 ∈
ℕ0 |
| 164 | | nfcv 2339 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑟(0...(𝑤 − 1)) |
| 165 | | nfv 1542 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟𝜃 |
| 166 | | nfs1v 1958 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟[𝑧 / 𝑟]𝜑 |
| 167 | 165, 166 | nfan 1579 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑟(𝜃 ∧ [𝑧 / 𝑟]𝜑) |
| 168 | | nfcv 2339 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟ℕ0 |
| 169 | | nfre1 2540 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑟∃𝑟 ∈ ℕ0
([𝑧 / 𝑥]𝜓 ∧ 𝜑) |
| 170 | 57, 169 | nfim 1586 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)) |
| 171 | 168, 170 | nfralxy 2535 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑟∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)) |
| 172 | 167, 171 | nfim 1586 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑟((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) |
| 173 | 164, 172 | nfralxy 2535 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑟∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) |
| 174 | 163, 173 | nfan 1579 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑟(𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) |
| 175 | | nfs1v 1958 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑟[𝑤 / 𝑟]𝜑 |
| 176 | 165, 175 | nfan 1579 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑟(𝜃 ∧ [𝑤 / 𝑟]𝜑) |
| 177 | 174, 176 | nfan 1579 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑟((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) |
| 178 | | nfv 1542 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑟0 < 𝑤 |
| 179 | 177, 178 | nfan 1579 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑟(((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) |
| 180 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑟 𝑦 ∈
ℕ0 |
| 181 | 179, 180 | nfan 1579 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑟((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) |
| 182 | 181, 57 | nfan 1579 |
. . . . . . . . . . 11
⊢
Ⅎ𝑟(((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) |
| 183 | 68, 72, 75, 80, 81, 82, 86, 93, 141, 162, 182 | bezoutlemstep 12189 |
. . . . . . . . . 10
⊢
((((((𝑤 ∈
ℕ0 ∧ ∀𝑧 ∈ (0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) ∧ 𝑦 ∈ ℕ0) ∧ [𝑦 / 𝑟]𝜑) → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) |
| 184 | 183 | exp31 364 |
. . . . . . . . 9
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → (𝑦 ∈ ℕ0 → ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)))) |
| 185 | 67, 184 | ralrimi 2568 |
. . . . . . . 8
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑))) |
| 186 | | sbsbc 2993 |
. . . . . . . . . . . 12
⊢ ([𝑤 / 𝑥]𝜓 ↔ [𝑤 / 𝑥]𝜓) |
| 187 | 186 | anbi1i 458 |
. . . . . . . . . . 11
⊢ (([𝑤 / 𝑥]𝜓 ∧ 𝜑) ↔ ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) |
| 188 | 187 | rexbii 2504 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
ℕ0 ([𝑤 /
𝑥]𝜓 ∧ 𝜑) ↔ ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) |
| 189 | 188 | imbi2i 226 |
. . . . . . . . 9
⊢ (([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) ↔ ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑))) |
| 190 | 189 | ralbii 2503 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ℕ0 ([𝑦 /
𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑)) ↔ ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑))) |
| 191 | 185, 190 | sylibr 134 |
. . . . . . 7
⊢ ((((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) ∧ 0 < 𝑤) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑))) |
| 192 | | nn0nlt0 9292 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℕ0
→ ¬ 𝑤 <
0) |
| 193 | | nn0z 9363 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℕ0
→ 𝑤 ∈
ℤ) |
| 194 | | ztri3or0 9385 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℤ → (𝑤 < 0 ∨ 𝑤 = 0 ∨ 0 < 𝑤)) |
| 195 | 193, 194 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ℕ0
→ (𝑤 < 0 ∨ 𝑤 = 0 ∨ 0 < 𝑤)) |
| 196 | | 3orass 983 |
. . . . . . . . . . 11
⊢ ((𝑤 < 0 ∨ 𝑤 = 0 ∨ 0 < 𝑤) ↔ (𝑤 < 0 ∨ (𝑤 = 0 ∨ 0 < 𝑤))) |
| 197 | 195, 196 | sylib 122 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℕ0
→ (𝑤 < 0 ∨
(𝑤 = 0 ∨ 0 < 𝑤))) |
| 198 | 197 | orcomd 730 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℕ0
→ ((𝑤 = 0 ∨ 0 <
𝑤) ∨ 𝑤 < 0)) |
| 199 | 192, 198 | ecased 1360 |
. . . . . . . 8
⊢ (𝑤 ∈ ℕ0
→ (𝑤 = 0 ∨ 0 <
𝑤)) |
| 200 | 199 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) → (𝑤 = 0 ∨ 0 < 𝑤)) |
| 201 | 65, 191, 200 | mpjaodan 799 |
. . . . . 6
⊢ (((𝑤 ∈ ℕ0
∧ ∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑)))) ∧ (𝜃 ∧ [𝑤 / 𝑟]𝜑)) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑))) |
| 202 | 201 | exp31 364 |
. . . . 5
⊢ (𝑤 ∈ ℕ0
→ (∀𝑧 ∈
(0...(𝑤 − 1))((𝜃 ∧ [𝑧 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑧 / 𝑥]𝜓 ∧ 𝜑))) → ((𝜃 ∧ [𝑤 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 ([𝑤 / 𝑥]𝜓 ∧ 𝜑))))) |
| 203 | 8, 16, 202 | nn0sinds 10555 |
. . . 4
⊢ (𝑥 ∈ ℕ0
→ ((𝜃 ∧ [𝑥 / 𝑟]𝜑) → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑)))) |
| 204 | 203 | expd 258 |
. . 3
⊢ (𝑥 ∈ ℕ0
→ (𝜃 → ([𝑥 / 𝑟]𝜑 → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑))))) |
| 205 | 204 | impcom 125 |
. 2
⊢ ((𝜃 ∧ 𝑥 ∈ ℕ0) → ([𝑥 / 𝑟]𝜑 → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑)))) |
| 206 | 205 | ralrimiva 2570 |
1
⊢ (𝜃 → ∀𝑥 ∈ ℕ0 ([𝑥 / 𝑟]𝜑 → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑)))) |