ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ12a GIF version

Theorem sbequ12a 1797
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ12a (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))

Proof of Theorem sbequ12a
StepHypRef Expression
1 sbequ12 1795 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
2 sbequ12 1795 . . 3 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
32equcoms 1732 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
41, 3bitr3d 190 1 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554
This theorem depends on definitions:  df-bi 117  df-sb 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator