![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbequ12r | GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 1771 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
2 | 1 | bicomd 141 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | equcoms 1708 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 |
This theorem depends on definitions: df-bi 117 df-sb 1763 |
This theorem is referenced by: abbi 2291 findes 4604 opeliunxp 4683 isarep1 5304 bezoutlemmain 12001 |
Copyright terms: Public domain | W3C validator |