Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbid | GIF version |
Description: An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbid | ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1689 | . . 3 ⊢ 𝑥 = 𝑥 | |
2 | sbequ12 1759 | . . 3 ⊢ (𝑥 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝜑 ↔ [𝑥 / 𝑥]𝜑) |
4 | 3 | bicomi 131 | 1 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: abid 2153 sbceq1a 2960 sbcid 2966 |
Copyright terms: Public domain | W3C validator |