| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbiim | GIF version | ||
| Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| simplbiim.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| simplbiim.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| simplbiim | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbiim.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | simplbiim.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | sylbi 121 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpodifsnif 6015 ixpm 6789 finct 7182 apsscn 8674 zltaddlt1le 10082 oddnn02np1 12045 dvdsprmpweqnn 12505 sgrpass 13051 |
| Copyright terms: Public domain | W3C validator |