| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apsscn | GIF version | ||
| Description: The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.) |
| Ref | Expression |
|---|---|
| apsscn | ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4085 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 # 𝐵 ↔ 𝑦 # 𝐵)) | |
| 2 | 1 | elrab 2959 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 # 𝐵)) |
| 3 | aprcl 8781 | . . . 4 ⊢ (𝑦 # 𝐵 → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | |
| 4 | 2, 3 | simplbiim 387 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
| 5 | 4 | simpld 112 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} → 𝑦 ∈ ℂ) |
| 6 | 5 | ssriv 3228 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 class class class wbr 4082 ℂcc 7985 # cap 8716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-resscn 8079 ax-icn 8082 ax-addcl 8083 ax-mulcl 8085 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-1st 6276 df-2nd 6277 df-ap 8717 |
| This theorem is referenced by: expghmap 14556 maxcncf 15274 mincncf 15275 limccoap 15337 dveflem 15385 |
| Copyright terms: Public domain | W3C validator |