ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apsscn GIF version

Theorem apsscn 8802
Description: The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
apsscn {𝑥𝐴𝑥 # 𝐵} ⊆ ℂ
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem apsscn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 4086 . . . . 5 (𝑥 = 𝑦 → (𝑥 # 𝐵𝑦 # 𝐵))
21elrab 2959 . . . 4 (𝑦 ∈ {𝑥𝐴𝑥 # 𝐵} ↔ (𝑦𝐴𝑦 # 𝐵))
3 aprcl 8801 . . . 4 (𝑦 # 𝐵 → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ))
42, 3simplbiim 387 . . 3 (𝑦 ∈ {𝑥𝐴𝑥 # 𝐵} → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ))
54simpld 112 . 2 (𝑦 ∈ {𝑥𝐴𝑥 # 𝐵} → 𝑦 ∈ ℂ)
65ssriv 3228 1 {𝑥𝐴𝑥 # 𝐵} ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2200  {crab 2512  wss 3197   class class class wbr 4083  cc 8005   # cap 8736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-resscn 8099  ax-icn 8102  ax-addcl 8103  ax-mulcl 8105
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6292  df-2nd 6293  df-ap 8737
This theorem is referenced by:  expghmap  14579  maxcncf  15297  mincncf  15298  limccoap  15360  dveflem  15408
  Copyright terms: Public domain W3C validator