| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apsscn | GIF version | ||
| Description: The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.) |
| Ref | Expression |
|---|---|
| apsscn | ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4086 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 # 𝐵 ↔ 𝑦 # 𝐵)) | |
| 2 | 1 | elrab 2959 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 # 𝐵)) |
| 3 | aprcl 8801 | . . . 4 ⊢ (𝑦 # 𝐵 → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | |
| 4 | 2, 3 | simplbiim 387 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
| 5 | 4 | simpld 112 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} → 𝑦 ∈ ℂ) |
| 6 | 5 | ssriv 3228 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 class class class wbr 4083 ℂcc 8005 # cap 8736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-resscn 8099 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-1st 6292 df-2nd 6293 df-ap 8737 |
| This theorem is referenced by: expghmap 14579 maxcncf 15297 mincncf 15298 limccoap 15360 dveflem 15408 |
| Copyright terms: Public domain | W3C validator |