| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apsscn | GIF version | ||
| Description: The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.) |
| Ref | Expression |
|---|---|
| apsscn | ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4036 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 # 𝐵 ↔ 𝑦 # 𝐵)) | |
| 2 | 1 | elrab 2920 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 # 𝐵)) |
| 3 | aprcl 8673 | . . . 4 ⊢ (𝑦 # 𝐵 → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | |
| 4 | 2, 3 | simplbiim 387 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
| 5 | 4 | simpld 112 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} → 𝑦 ∈ ℂ) |
| 6 | 5 | ssriv 3187 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2167 {crab 2479 ⊆ wss 3157 class class class wbr 4033 ℂcc 7877 # cap 8608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-resscn 7971 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-1st 6198 df-2nd 6199 df-ap 8609 |
| This theorem is referenced by: expghmap 14163 maxcncf 14851 mincncf 14852 limccoap 14914 dveflem 14962 |
| Copyright terms: Public domain | W3C validator |