Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > apsscn | GIF version |
Description: The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.) |
Ref | Expression |
---|---|
apsscn | ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3990 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 # 𝐵 ↔ 𝑦 # 𝐵)) | |
2 | 1 | elrab 2886 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 # 𝐵)) |
3 | aprcl 8552 | . . . 4 ⊢ (𝑦 # 𝐵 → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | |
4 | 2, 3 | simplbiim 385 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} → (𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
5 | 4 | simpld 111 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} → 𝑦 ∈ ℂ) |
6 | 5 | ssriv 3151 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2141 {crab 2452 ⊆ wss 3121 class class class wbr 3987 ℂcc 7759 # cap 8487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-resscn 7853 ax-icn 7856 ax-addcl 7857 ax-mulcl 7859 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fo 5202 df-fv 5204 df-1st 6116 df-2nd 6117 df-ap 8488 |
This theorem is referenced by: limccoap 13400 dveflem 13440 |
Copyright terms: Public domain | W3C validator |