Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpl2im | GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | simpr 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 1, 2, 3 | 3syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 |
This theorem is referenced by: ctssdccl 7088 enumct 7092 djuen 7188 ndvdssub 11889 sgrpidmndm 12656 xmeteq0 13153 xmettri2 13155 metcnpi 13309 metcnpi2 13310 dvbssntrcntop 13447 |
Copyright terms: Public domain | W3C validator |