ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl2im GIF version

Theorem simpl2im 384
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.)
Hypotheses
Ref Expression
simpl2im.1 (𝜑 → (𝜓𝜒))
simpl2im.2 (𝜒𝜃)
Assertion
Ref Expression
simpl2im (𝜑𝜃)

Proof of Theorem simpl2im
StepHypRef Expression
1 simpl2im.1 . 2 (𝜑 → (𝜓𝜒))
2 simpr 109 . 2 ((𝜓𝜒) → 𝜒)
3 simpl2im.2 . 2 (𝜒𝜃)
41, 2, 33syl 17 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106
This theorem is referenced by:  ctssdccl  7076  enumct  7080  djuen  7167  ndvdssub  11867  xmeteq0  13009  xmettri2  13011  metcnpi  13165  metcnpi2  13166  dvbssntrcntop  13303
  Copyright terms: Public domain W3C validator