![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixpm | GIF version |
Description: If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited, every 𝐵(𝑥) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.) |
Ref | Expression |
---|---|
ixpm | ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 6753 | . . . 4 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
2 | 1 | abeq2i 2304 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
3 | elex2 2776 | . . . 4 ⊢ ((𝑓‘𝑥) ∈ 𝐵 → ∃𝑧 𝑧 ∈ 𝐵) | |
4 | 3 | ralimi 2557 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
5 | 2, 4 | simplbiim 387 | . 2 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
6 | 5 | exlimiv 1609 | 1 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 ∈ wcel 2164 {cab 2179 ∀wral 2472 Fn wfn 5249 ‘cfv 5254 Xcixp 6752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-v 2762 df-ixp 6753 |
This theorem is referenced by: ixp0 6785 |
Copyright terms: Public domain | W3C validator |