ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpm GIF version

Theorem ixpm 6696
Description: If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited, every 𝐵(𝑥) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixpm (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
Distinct variable groups:   𝐴,𝑓   𝑧,𝑓,𝐵   𝑥,𝑓,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥)

Proof of Theorem ixpm
StepHypRef Expression
1 df-ixp 6665 . . . 4 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
21abeq2i 2277 . . 3 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3 elex2 2742 . . . 4 ((𝑓𝑥) ∈ 𝐵 → ∃𝑧 𝑧𝐵)
43ralimi 2529 . . 3 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
52, 4simplbiim 385 . 2 (𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
65exlimiv 1586 1 (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1480  wcel 2136  {cab 2151  wral 2444   Fn wfn 5183  cfv 5188  Xcixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-v 2728  df-ixp 6665
This theorem is referenced by:  ixp0  6697
  Copyright terms: Public domain W3C validator