ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpm GIF version

Theorem ixpm 6824
Description: If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited, every 𝐵(𝑥) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixpm (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
Distinct variable groups:   𝐴,𝑓   𝑧,𝑓,𝐵   𝑥,𝑓,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥)

Proof of Theorem ixpm
StepHypRef Expression
1 df-ixp 6793 . . . 4 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
21abeq2i 2317 . . 3 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3 elex2 2789 . . . 4 ((𝑓𝑥) ∈ 𝐵 → ∃𝑧 𝑧𝐵)
43ralimi 2570 . . 3 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
52, 4simplbiim 387 . 2 (𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
65exlimiv 1622 1 (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516  wcel 2177  {cab 2192  wral 2485   Fn wfn 5271  cfv 5276  Xcixp 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ral 2490  df-v 2775  df-ixp 6793
This theorem is referenced by:  ixp0  6825
  Copyright terms: Public domain W3C validator