![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixpm | GIF version |
Description: If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited, every 𝐵(𝑥) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.) |
Ref | Expression |
---|---|
ixpm | ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 6547 | . . . 4 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
2 | 1 | abeq2i 2225 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
3 | elex2 2673 | . . . 4 ⊢ ((𝑓‘𝑥) ∈ 𝐵 → ∃𝑧 𝑧 ∈ 𝐵) | |
4 | 3 | ralimi 2469 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
5 | 2, 4 | simplbiim 382 | . 2 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
6 | 5 | exlimiv 1560 | 1 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1451 ∈ wcel 1463 {cab 2101 ∀wral 2390 Fn wfn 5076 ‘cfv 5081 Xcixp 6546 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-ral 2395 df-v 2659 df-ixp 6547 |
This theorem is referenced by: ixp0 6579 |
Copyright terms: Public domain | W3C validator |