| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sgrpass | GIF version | ||
| Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| sgrpass.b | ⊢ 𝐵 = (Base‘𝐺) |
| sgrpass.o | ⊢ ⚬ = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| sgrpass | ⊢ ((𝐺 ∈ Smgrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrpass.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | sgrpass.o | . . . 4 ⊢ ⚬ = (+g‘𝐺) | |
| 3 | 1, 2 | issgrp 13402 | . . 3 ⊢ (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
| 4 | oveq1 5981 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 ⚬ 𝑦) = (𝑋 ⚬ 𝑦)) | |
| 5 | 4 | oveq1d 5989 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑦) ⚬ 𝑧)) |
| 6 | oveq1 5981 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑦 ⚬ 𝑧))) | |
| 7 | 5, 6 | eqeq12d 2224 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
| 8 | oveq2 5982 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋 ⚬ 𝑦) = (𝑋 ⚬ 𝑌)) | |
| 9 | 8 | oveq1d 5989 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑧)) |
| 10 | oveq1 5981 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ⚬ 𝑧) = (𝑌 ⚬ 𝑧)) | |
| 11 | 10 | oveq2d 5990 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑧))) |
| 12 | 9, 11 | eqeq12d 2224 | . . . . 5 ⊢ (𝑦 = 𝑌 → (((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
| 13 | oveq2 5982 | . . . . . 6 ⊢ (𝑧 = 𝑍 → ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑍)) | |
| 14 | oveq2 5982 | . . . . . . 7 ⊢ (𝑧 = 𝑍 → (𝑌 ⚬ 𝑧) = (𝑌 ⚬ 𝑍)) | |
| 15 | 14 | oveq2d 5990 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑋 ⚬ (𝑌 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
| 16 | 13, 15 | eqeq12d 2224 | . . . . 5 ⊢ (𝑧 = 𝑍 → (((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
| 17 | 7, 12, 16 | rspc3v 2903 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
| 18 | 17 | com12 30 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
| 19 | 3, 18 | simplbiim 387 | . 2 ⊢ (𝐺 ∈ Smgrp → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
| 20 | 19 | imp 124 | 1 ⊢ ((𝐺 ∈ Smgrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∀wral 2488 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 Mgmcmgm 13353 Smgrpcsgrp 13400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-ov 5977 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-sgrp 13401 |
| This theorem is referenced by: prdssgrpd 13414 mndass 13423 dfgrp2 13526 dfgrp3mlem 13597 dfgrp3me 13599 mulgnndir 13654 rngass 13868 rnglidlmsgrp 14426 |
| Copyright terms: Public domain | W3C validator |