ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpass GIF version

Theorem sgrpass 13449
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
sgrpass.b 𝐵 = (Base‘𝐺)
sgrpass.o = (+g𝐺)
Assertion
Ref Expression
sgrpass ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem sgrpass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpass.b . . . 4 𝐵 = (Base‘𝐺)
2 sgrpass.o . . . 4 = (+g𝐺)
31, 2issgrp 13444 . . 3 (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
4 oveq1 6014 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
54oveq1d 6022 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦) 𝑧) = ((𝑋 𝑦) 𝑧))
6 oveq1 6014 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝑦 𝑧)) = (𝑋 (𝑦 𝑧)))
75, 6eqeq12d 2244 . . . . 5 (𝑥 = 𝑋 → (((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
8 oveq2 6015 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
98oveq1d 6022 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦) 𝑧) = ((𝑋 𝑌) 𝑧))
10 oveq1 6014 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
1110oveq2d 6023 . . . . . 6 (𝑦 = 𝑌 → (𝑋 (𝑦 𝑧)) = (𝑋 (𝑌 𝑧)))
129, 11eqeq12d 2244 . . . . 5 (𝑦 = 𝑌 → (((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
13 oveq2 6015 . . . . . 6 (𝑧 = 𝑍 → ((𝑋 𝑌) 𝑧) = ((𝑋 𝑌) 𝑍))
14 oveq2 6015 . . . . . . 7 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
1514oveq2d 6023 . . . . . 6 (𝑧 = 𝑍 → (𝑋 (𝑌 𝑧)) = (𝑋 (𝑌 𝑍)))
1613, 15eqeq12d 2244 . . . . 5 (𝑧 = 𝑍 → (((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)) ↔ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
177, 12, 16rspc3v 2923 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
1817com12 30 . . 3 (∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
193, 18simplbiim 387 . 2 (𝐺 ∈ Smgrp → ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
2019imp 124 1 ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  Mgmcmgm 13395  Smgrpcsgrp 13442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6010  df-inn 9119  df-2 9177  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-sgrp 13443
This theorem is referenced by:  prdssgrpd  13456  mndass  13465  dfgrp2  13568  dfgrp3mlem  13639  dfgrp3me  13641  mulgnndir  13696  rngass  13910  rnglidlmsgrp  14469
  Copyright terms: Public domain W3C validator