![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sgrpass | GIF version |
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.) |
Ref | Expression |
---|---|
sgrpass.b | ⊢ 𝐵 = (Base‘𝐺) |
sgrpass.o | ⊢ ⚬ = (+g‘𝐺) |
Ref | Expression |
---|---|
sgrpass | ⊢ ((𝐺 ∈ Smgrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrpass.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | sgrpass.o | . . . 4 ⊢ ⚬ = (+g‘𝐺) | |
3 | 1, 2 | issgrp 12814 | . . 3 ⊢ (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
4 | oveq1 5884 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 ⚬ 𝑦) = (𝑋 ⚬ 𝑦)) | |
5 | 4 | oveq1d 5892 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑦) ⚬ 𝑧)) |
6 | oveq1 5884 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑦 ⚬ 𝑧))) | |
7 | 5, 6 | eqeq12d 2192 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
8 | oveq2 5885 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋 ⚬ 𝑦) = (𝑋 ⚬ 𝑌)) | |
9 | 8 | oveq1d 5892 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑧)) |
10 | oveq1 5884 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ⚬ 𝑧) = (𝑌 ⚬ 𝑧)) | |
11 | 10 | oveq2d 5893 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑧))) |
12 | 9, 11 | eqeq12d 2192 | . . . . 5 ⊢ (𝑦 = 𝑌 → (((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
13 | oveq2 5885 | . . . . . 6 ⊢ (𝑧 = 𝑍 → ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑍)) | |
14 | oveq2 5885 | . . . . . . 7 ⊢ (𝑧 = 𝑍 → (𝑌 ⚬ 𝑧) = (𝑌 ⚬ 𝑍)) | |
15 | 14 | oveq2d 5893 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑋 ⚬ (𝑌 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
16 | 13, 15 | eqeq12d 2192 | . . . . 5 ⊢ (𝑧 = 𝑍 → (((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
17 | 7, 12, 16 | rspc3v 2859 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
18 | 17 | com12 30 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
19 | 3, 18 | simplbiim 387 | . 2 ⊢ (𝐺 ∈ Smgrp → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
20 | 19 | imp 124 | 1 ⊢ ((𝐺 ∈ Smgrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ‘cfv 5218 (class class class)co 5877 Basecbs 12464 +gcplusg 12538 Mgmcmgm 12778 Smgrpcsgrp 12812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5880 df-inn 8922 df-2 8980 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-sgrp 12813 |
This theorem is referenced by: mndass 12830 dfgrp2 12907 dfgrp3mlem 12973 dfgrp3me 12975 mulgnndir 13017 |
Copyright terms: Public domain | W3C validator |