Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sgrpass | GIF version |
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.) |
Ref | Expression |
---|---|
sgrpass.b | ⊢ 𝐵 = (Base‘𝐺) |
sgrpass.o | ⊢ ⚬ = (+g‘𝐺) |
Ref | Expression |
---|---|
sgrpass | ⊢ ((𝐺 ∈ Smgrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrpass.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | sgrpass.o | . . . 4 ⊢ ⚬ = (+g‘𝐺) | |
3 | 1, 2 | issgrp 12621 | . . 3 ⊢ (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
4 | oveq1 5849 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 ⚬ 𝑦) = (𝑋 ⚬ 𝑦)) | |
5 | 4 | oveq1d 5857 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑦) ⚬ 𝑧)) |
6 | oveq1 5849 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑦 ⚬ 𝑧))) | |
7 | 5, 6 | eqeq12d 2180 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
8 | oveq2 5850 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋 ⚬ 𝑦) = (𝑋 ⚬ 𝑌)) | |
9 | 8 | oveq1d 5857 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑧)) |
10 | oveq1 5849 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ⚬ 𝑧) = (𝑌 ⚬ 𝑧)) | |
11 | 10 | oveq2d 5858 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑧))) |
12 | 9, 11 | eqeq12d 2180 | . . . . 5 ⊢ (𝑦 = 𝑌 → (((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
13 | oveq2 5850 | . . . . . 6 ⊢ (𝑧 = 𝑍 → ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑍)) | |
14 | oveq2 5850 | . . . . . . 7 ⊢ (𝑧 = 𝑍 → (𝑌 ⚬ 𝑧) = (𝑌 ⚬ 𝑍)) | |
15 | 14 | oveq2d 5858 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑋 ⚬ (𝑌 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
16 | 13, 15 | eqeq12d 2180 | . . . . 5 ⊢ (𝑧 = 𝑍 → (((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
17 | 7, 12, 16 | rspc3v 2846 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
18 | 17 | com12 30 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
19 | 3, 18 | simplbiim 385 | . 2 ⊢ (𝐺 ∈ Smgrp → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
20 | 19 | imp 123 | 1 ⊢ ((𝐺 ∈ Smgrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ‘cfv 5188 (class class class)co 5842 Basecbs 12394 +gcplusg 12457 Mgmcmgm 12585 Smgrpcsgrp 12619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-sgrp 12620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |