| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddnn02np1 | GIF version | ||
| Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.) |
| Ref | Expression |
|---|---|
| oddnn02np1 | ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
| 2 | elnn0z 9385 | . . . . . . . . 9 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 ↔ (((2 · 𝑛) + 1) ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1))) | |
| 3 | 2tnp1ge0ge0 10444 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) ↔ 0 ≤ 𝑛)) | |
| 4 | 3 | biimpd 144 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) → 0 ≤ 𝑛)) |
| 5 | 4 | imdistani 445 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) |
| 6 | 5 | expcom 116 | . . . . . . . . . 10 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))) |
| 7 | elnn0z 9385 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) | |
| 8 | 6, 7 | imbitrrdi 162 | . . . . . . . . 9 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
| 9 | 2, 8 | simplbiim 387 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
| 10 | 1, 9 | biimtrrdi 164 | . . . . . . 7 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))) |
| 11 | 10 | com13 80 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0))) |
| 12 | 11 | impcom 125 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0)) |
| 13 | 12 | pm4.71rd 394 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
| 14 | 13 | bicomd 141 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁)) |
| 15 | 14 | rexbidva 2503 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
| 16 | nn0ssz 9390 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
| 17 | rexss 3260 | . . 3 ⊢ (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) | |
| 18 | 16, 17 | mp1i 10 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
| 19 | nn0z 9392 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 20 | odd2np1 12184 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
| 21 | 19, 20 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
| 22 | 15, 18, 21 | 3bitr4rd 221 | 1 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 ⊆ wss 3166 class class class wbr 4044 (class class class)co 5944 0cc0 7925 1c1 7926 + caddc 7928 · cmul 7930 ≤ cle 8108 2c2 9087 ℕ0cn0 9295 ℤcz 9372 ∥ cdvds 12098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-n0 9296 df-z 9373 df-dvds 12099 |
| This theorem is referenced by: oddge22np1 12192 2lgslem1c 15567 |
| Copyright terms: Public domain | W3C validator |