Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oddnn02np1 | GIF version |
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.) |
Ref | Expression |
---|---|
oddnn02np1 | ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2233 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
2 | elnn0z 9225 | . . . . . . . . 9 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 ↔ (((2 · 𝑛) + 1) ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1))) | |
3 | 2tnp1ge0ge0 10257 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) ↔ 0 ≤ 𝑛)) | |
4 | 3 | biimpd 143 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) → 0 ≤ 𝑛)) |
5 | 4 | imdistani 443 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) |
6 | 5 | expcom 115 | . . . . . . . . . 10 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))) |
7 | elnn0z 9225 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) | |
8 | 6, 7 | syl6ibr 161 | . . . . . . . . 9 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
9 | 2, 8 | simplbiim 385 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
10 | 1, 9 | syl6bir 163 | . . . . . . 7 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))) |
11 | 10 | com13 80 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0))) |
12 | 11 | impcom 124 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0)) |
13 | 12 | pm4.71rd 392 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
14 | 13 | bicomd 140 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁)) |
15 | 14 | rexbidva 2467 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
16 | nn0ssz 9230 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
17 | rexss 3214 | . . 3 ⊢ (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) | |
18 | 16, 17 | mp1i 10 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
19 | nn0z 9232 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
20 | odd2np1 11832 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
22 | 15, 18, 21 | 3bitr4rd 220 | 1 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ⊆ wss 3121 class class class wbr 3989 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 ≤ cle 7955 2c2 8929 ℕ0cn0 9135 ℤcz 9212 ∥ cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-xor 1371 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-dvds 11750 |
This theorem is referenced by: oddge22np1 11840 |
Copyright terms: Public domain | W3C validator |