Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oddnn02np1 | GIF version |
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.) |
Ref | Expression |
---|---|
oddnn02np1 | ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2220 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
2 | elnn0z 9163 | . . . . . . . . 9 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 ↔ (((2 · 𝑛) + 1) ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1))) | |
3 | 2tnp1ge0ge0 10182 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) ↔ 0 ≤ 𝑛)) | |
4 | 3 | biimpd 143 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) → 0 ≤ 𝑛)) |
5 | 4 | imdistani 442 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) |
6 | 5 | expcom 115 | . . . . . . . . . 10 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))) |
7 | elnn0z 9163 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) | |
8 | 6, 7 | syl6ibr 161 | . . . . . . . . 9 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
9 | 2, 8 | simplbiim 385 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
10 | 1, 9 | syl6bir 163 | . . . . . . 7 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))) |
11 | 10 | com13 80 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0))) |
12 | 11 | impcom 124 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0)) |
13 | 12 | pm4.71rd 392 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
14 | 13 | bicomd 140 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁)) |
15 | 14 | rexbidva 2454 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
16 | nn0ssz 9168 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
17 | rexss 3195 | . . 3 ⊢ (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) | |
18 | 16, 17 | mp1i 10 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
19 | nn0z 9170 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
20 | odd2np1 11745 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
22 | 15, 18, 21 | 3bitr4rd 220 | 1 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 ⊆ wss 3102 class class class wbr 3965 (class class class)co 5818 0cc0 7715 1c1 7716 + caddc 7718 · cmul 7720 ≤ cle 7896 2c2 8867 ℕ0cn0 9073 ℤcz 9150 ∥ cdvds 11665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-xor 1358 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-n0 9074 df-z 9151 df-dvds 11666 |
This theorem is referenced by: oddge22np1 11753 |
Copyright terms: Public domain | W3C validator |