| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simplbiim | Unicode version | ||
| Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| simplbiim.1 | 
 | 
| simplbiim.2 | 
 | 
| Ref | Expression | 
|---|---|
| simplbiim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simplbiim.1 | 
. 2
 | |
| 2 | simplbiim.2 | 
. . 3
 | |
| 3 | 2 | adantl 277 | 
. 2
 | 
| 4 | 1, 3 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: mpodifsnif 6015 ixpm 6789 finct 7182 apsscn 8674 zltaddlt1le 10082 oddnn02np1 12045 dvdsprmpweqnn 12505 sgrpass 13051 | 
| Copyright terms: Public domain | W3C validator |