| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbiim | Unicode version | ||
| Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| simplbiim.1 |
|
| simplbiim.2 |
|
| Ref | Expression |
|---|---|
| simplbiim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbiim.1 |
. 2
| |
| 2 | simplbiim.2 |
. . 3
| |
| 3 | 2 | adantl 277 |
. 2
|
| 4 | 1, 3 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpodifsnif 6019 ixpm 6798 finct 7191 apsscn 8691 zltaddlt1le 10099 oddnn02np1 12062 dvdsprmpweqnn 12530 sgrpass 13110 |
| Copyright terms: Public domain | W3C validator |