ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltaddlt1le GIF version

Theorem zltaddlt1le 10203
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
zltaddlt1le ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁))

Proof of Theorem zltaddlt1le
StepHypRef Expression
1 zre 9450 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21adantr 276 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ)
3 elioore 10108 . . . . . 6 (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ)
43adantl 277 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ)
52, 4readdcld 8176 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ)
653adant2 1040 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ)
7 zre 9450 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
873ad2ant2 1043 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
9 ltle 8234 . . 3 (((𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁))
106, 8, 9syl2anc 411 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁))
11 elioo3g 10106 . . . . . 6 (𝐴 ∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (0 < 𝐴𝐴 < 1)))
12 simpl 109 . . . . . 6 ((0 < 𝐴𝐴 < 1) → 0 < 𝐴)
1311, 12simplbiim 387 . . . . 5 (𝐴 ∈ (0(,)1) → 0 < 𝐴)
143, 13elrpd 9889 . . . 4 (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ+)
15 addlelt 9964 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))
161, 7, 14, 15syl3an 1313 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))
17 zltp1le 9501 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
18173adant3 1041 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
1933ad2ant3 1044 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ)
20 1red 8161 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 1 ∈ ℝ)
2113ad2ant1 1042 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ)
22 simpr 110 . . . . . . . 8 ((0 < 𝐴𝐴 < 1) → 𝐴 < 1)
2311, 22simplbiim 387 . . . . . . 7 (𝐴 ∈ (0(,)1) → 𝐴 < 1)
24233ad2ant3 1044 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 < 1)
2519, 20, 21, 24ltadd2dd 8569 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) < (𝑀 + 1))
26 peano2z 9482 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
2726zred 9569 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℝ)
28273ad2ant1 1042 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 1) ∈ ℝ)
29 ltletr 8236 . . . . . 6 (((𝑀 + 𝐴) ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁))
306, 28, 8, 29syl3anc 1271 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁))
3125, 30mpand 429 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁))
3218, 31sylbid 150 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 → (𝑀 + 𝐴) < 𝑁))
3316, 32syld 45 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁))
3410, 33impbid 129 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002  wcel 2200   class class class wbr 4083  (class class class)co 6001  cr 7998  0cc0 7999  1c1 8000   + caddc 8002  *cxr 8180   < clt 8181  cle 8182  cz 9446  +crp 9849  (,)cioo 10084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-rp 9850  df-ioo 10088
This theorem is referenced by:  halfleoddlt  12405
  Copyright terms: Public domain W3C validator