ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spv GIF version

Theorem spv 1884
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
spv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spv (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spv
StepHypRef Expression
1 spv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 144 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimv 1835 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  spvv  1932  cbvalvw  1944  chvarv  1966  ru  3001  nalset  4182  tfisi  4643  tfr1onlemsucfn  6439  tfr1onlemsucaccv  6440  tfr1onlembxssdm  6442  tfr1onlembfn  6443  tfr1onlemres  6448  tfri1dALT  6450  tfrcllemsucfn  6452  tfrcllemsucaccv  6453  tfrcllembxssdm  6455  tfrcllembfn  6456  tfrcllemres  6461  findcard2  7001  findcard2s  7002  bj-nalset  15969
  Copyright terms: Public domain W3C validator