ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spv GIF version

Theorem spv 1848
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
spv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spv (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spv
StepHypRef Expression
1 spv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 143 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimv 1799 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  spvv  1895  cbvalvw  1907  chvarv  1925  ru  2950  nalset  4112  tfisi  4564  tfr1onlemsucfn  6308  tfr1onlemsucaccv  6309  tfr1onlembxssdm  6311  tfr1onlembfn  6312  tfr1onlemres  6317  tfri1dALT  6319  tfrcllemsucfn  6321  tfrcllemsucaccv  6322  tfrcllembxssdm  6324  tfrcllembfn  6325  tfrcllemres  6330  findcard2  6855  findcard2s  6856  bj-nalset  13777
  Copyright terms: Public domain W3C validator