![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spv | GIF version |
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 144 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimv 1822 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: spvv 1919 cbvalvw 1931 chvarv 1953 ru 2984 nalset 4159 tfisi 4619 tfr1onlemsucfn 6393 tfr1onlemsucaccv 6394 tfr1onlembxssdm 6396 tfr1onlembfn 6397 tfr1onlemres 6402 tfri1dALT 6404 tfrcllemsucfn 6406 tfrcllemsucaccv 6407 tfrcllembxssdm 6409 tfrcllembfn 6410 tfrcllemres 6415 findcard2 6945 findcard2s 6946 bj-nalset 15387 |
Copyright terms: Public domain | W3C validator |