Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spv | GIF version |
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 143 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimv 1804 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: spvv 1900 cbvalvw 1912 chvarv 1930 ru 2954 nalset 4119 tfisi 4571 tfr1onlemsucfn 6319 tfr1onlemsucaccv 6320 tfr1onlembxssdm 6322 tfr1onlembfn 6323 tfr1onlemres 6328 tfri1dALT 6330 tfrcllemsucfn 6332 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllembfn 6336 tfrcllemres 6341 findcard2 6867 findcard2s 6868 bj-nalset 13930 |
Copyright terms: Public domain | W3C validator |