ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spv GIF version

Theorem spv 1789
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
spv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spv (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spv
StepHypRef Expression
1 spv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 143 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimv 1740 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473
This theorem depends on definitions:  df-bi 116  df-nf 1396
This theorem is referenced by:  chvarv  1861  ru  2840  nalset  3975  tfisi  4415  tfr1onlemsucfn  6119  tfr1onlemsucaccv  6120  tfr1onlembxssdm  6122  tfr1onlembfn  6123  tfr1onlemres  6128  tfri1dALT  6130  tfrcllemsucfn  6132  tfrcllemsucaccv  6133  tfrcllembxssdm  6135  tfrcllembfn  6136  tfrcllemres  6141  findcard2  6659  findcard2s  6660  bj-nalset  12059
  Copyright terms: Public domain W3C validator