![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spv | GIF version |
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 144 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimv 1811 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: spvv 1907 cbvalvw 1919 chvarv 1937 ru 2961 nalset 4133 tfisi 4586 tfr1onlemsucfn 6340 tfr1onlemsucaccv 6341 tfr1onlembxssdm 6343 tfr1onlembfn 6344 tfr1onlemres 6349 tfri1dALT 6351 tfrcllemsucfn 6353 tfrcllemsucaccv 6354 tfrcllembxssdm 6356 tfrcllembfn 6357 tfrcllemres 6362 findcard2 6888 findcard2s 6889 bj-nalset 14617 |
Copyright terms: Public domain | W3C validator |