![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spv | GIF version |
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 143 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimv 1740 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 |
This theorem depends on definitions: df-bi 116 df-nf 1396 |
This theorem is referenced by: chvarv 1861 ru 2840 nalset 3975 tfisi 4415 tfr1onlemsucfn 6119 tfr1onlemsucaccv 6120 tfr1onlembxssdm 6122 tfr1onlembfn 6123 tfr1onlemres 6128 tfri1dALT 6130 tfrcllemsucfn 6132 tfrcllemsucaccv 6133 tfrcllembxssdm 6135 tfrcllembfn 6136 tfrcllemres 6141 findcard2 6659 findcard2s 6660 bj-nalset 12059 |
Copyright terms: Public domain | W3C validator |