ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spv GIF version

Theorem spv 1906
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
spv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spv (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spv
StepHypRef Expression
1 spv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 144 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimv 1857 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  spvv  1954  cbvalvw  1966  chvarv  1988  ru  3027  nalset  4213  tfisi  4678  tfr1onlemsucfn  6484  tfr1onlemsucaccv  6485  tfr1onlembxssdm  6487  tfr1onlembfn  6488  tfr1onlemres  6493  tfri1dALT  6495  tfrcllemsucfn  6497  tfrcllemsucaccv  6498  tfrcllembxssdm  6500  tfrcllembfn  6501  tfrcllemres  6506  findcard2  7047  findcard2s  7048  bj-nalset  16216
  Copyright terms: Public domain W3C validator