| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spv | GIF version | ||
| Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | spimv 1857 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: spvv 1954 cbvalvw 1966 chvarv 1988 ru 3027 nalset 4213 tfisi 4678 tfr1onlemsucfn 6484 tfr1onlemsucaccv 6485 tfr1onlembxssdm 6487 tfr1onlembfn 6488 tfr1onlemres 6493 tfri1dALT 6495 tfrcllemsucfn 6497 tfrcllemsucaccv 6498 tfrcllembxssdm 6500 tfrcllembfn 6501 tfrcllemres 6506 findcard2 7047 findcard2s 7048 bj-nalset 16216 |
| Copyright terms: Public domain | W3C validator |