| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spv | GIF version | ||
| Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | spimv 1835 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: spvv 1932 cbvalvw 1944 chvarv 1966 ru 3001 nalset 4182 tfisi 4643 tfr1onlemsucfn 6439 tfr1onlemsucaccv 6440 tfr1onlembxssdm 6442 tfr1onlembfn 6443 tfr1onlemres 6448 tfri1dALT 6450 tfrcllemsucfn 6452 tfrcllemsucaccv 6453 tfrcllembxssdm 6455 tfrcllembfn 6456 tfrcllemres 6461 findcard2 7001 findcard2s 7002 bj-nalset 15969 |
| Copyright terms: Public domain | W3C validator |