Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spv | GIF version |
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 143 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimv 1799 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: spvv 1895 cbvalvw 1907 chvarv 1925 ru 2950 nalset 4112 tfisi 4564 tfr1onlemsucfn 6308 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfr1onlemres 6317 tfri1dALT 6319 tfrcllemsucfn 6321 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tfrcllembfn 6325 tfrcllemres 6330 findcard2 6855 findcard2s 6856 bj-nalset 13777 |
Copyright terms: Public domain | W3C validator |