| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spv | GIF version | ||
| Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | spimv 1825 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: spvv 1922 cbvalvw 1934 chvarv 1956 ru 2988 nalset 4164 tfisi 4624 tfr1onlemsucfn 6407 tfr1onlemsucaccv 6408 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfr1onlemres 6416 tfri1dALT 6418 tfrcllemsucfn 6420 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 tfrcllembfn 6424 tfrcllemres 6429 findcard2 6959 findcard2s 6960 bj-nalset 15625 |
| Copyright terms: Public domain | W3C validator |