Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spv | GIF version |
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 144 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimv 1809 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-nf 1459 |
This theorem is referenced by: spvv 1905 cbvalvw 1917 chvarv 1935 ru 2959 nalset 4128 tfisi 4580 tfr1onlemsucfn 6331 tfr1onlemsucaccv 6332 tfr1onlembxssdm 6334 tfr1onlembfn 6335 tfr1onlemres 6340 tfri1dALT 6342 tfrcllemsucfn 6344 tfrcllemsucaccv 6345 tfrcllembxssdm 6347 tfrcllembfn 6348 tfrcllemres 6353 findcard2 6879 findcard2s 6880 bj-nalset 14205 |
Copyright terms: Public domain | W3C validator |