Step | Hyp | Ref
| Expression |
1 | | 1prl 7492 |
. . . 4
⊢
(1st ‘1P) = {𝑤 ∣ 𝑤 <Q
1Q} |
2 | 1 | abeq2i 2276 |
. . 3
⊢ (𝑤 ∈ (1st
‘1P) ↔ 𝑤 <Q
1Q) |
3 | | rec1nq 7332 |
. . . . . . 7
⊢
(*Q‘1Q) =
1Q |
4 | | ltrnqi 7358 |
. . . . . . 7
⊢ (𝑤 <Q
1Q →
(*Q‘1Q)
<Q (*Q‘𝑤)) |
5 | 3, 4 | eqbrtrrid 4017 |
. . . . . 6
⊢ (𝑤 <Q
1Q → 1Q
<Q (*Q‘𝑤)) |
6 | | prop 7412 |
. . . . . . 7
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
7 | | prmuloc2 7504 |
. . . . . . 7
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧
1Q <Q
(*Q‘𝑤)) → ∃𝑣 ∈ (1st ‘𝐴)(𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴)) |
8 | 6, 7 | sylan 281 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
1Q <Q
(*Q‘𝑤)) → ∃𝑣 ∈ (1st ‘𝐴)(𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴)) |
9 | 5, 8 | sylan2 284 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝑤
<Q 1Q) → ∃𝑣 ∈ (1st
‘𝐴)(𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) |
10 | | prnmaxl 7425 |
. . . . . . . 8
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑣 ∈ (1st
‘𝐴)) →
∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧) |
11 | 6, 10 | sylan 281 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑣 ∈ (1st
‘𝐴)) →
∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧) |
12 | 11 | ad2ant2r 501 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) →
∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧) |
13 | | elprnql 7418 |
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑣 ∈ (1st
‘𝐴)) → 𝑣 ∈
Q) |
14 | 6, 13 | sylan 281 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝑣 ∈ (1st
‘𝐴)) → 𝑣 ∈
Q) |
15 | 14 | ad2ant2r 501 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) → 𝑣 ∈
Q) |
16 | 15 | 3adant3 1007 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑣 ∈
Q) |
17 | | simp1r 1012 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑤 <Q
1Q) |
18 | | ltrelnq 7302 |
. . . . . . . . . . . . . 14
⊢
<Q ⊆ (Q ×
Q) |
19 | 18 | brel 4655 |
. . . . . . . . . . . . 13
⊢ (𝑤 <Q
1Q → (𝑤 ∈ Q ∧
1Q ∈ Q)) |
20 | 19 | simpld 111 |
. . . . . . . . . . . 12
⊢ (𝑤 <Q
1Q → 𝑤 ∈ Q) |
21 | 17, 20 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑤 ∈
Q) |
22 | | simp3 989 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑣 <Q
𝑧) |
23 | | simp2r 1014 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) |
24 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → (𝑣 <Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) |
25 | | ltrnqi 7358 |
. . . . . . . . . . . . . 14
⊢ (𝑣 <Q
𝑧 →
(*Q‘𝑧) <Q
(*Q‘𝑣)) |
26 | | ltmnqg 7338 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ ·Q 𝑓) <Q
(ℎ
·Q 𝑔))) |
27 | 26 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ ·Q 𝑓) <Q
(ℎ
·Q 𝑔))) |
28 | | simprl 521 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → 𝑣 <Q 𝑧) |
29 | 18 | brel 4655 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 <Q
𝑧 → (𝑣 ∈ Q ∧
𝑧 ∈
Q)) |
30 | 29 | simprd 113 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 <Q
𝑧 → 𝑧 ∈ Q) |
31 | | recclnq 7329 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ Q →
(*Q‘𝑧) ∈ Q) |
32 | 28, 30, 31 | 3syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(*Q‘𝑧) ∈ Q) |
33 | | recclnq 7329 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ Q →
(*Q‘𝑣) ∈ Q) |
34 | 33 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(*Q‘𝑣) ∈ Q) |
35 | | simplr 520 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → 𝑤 ∈ Q) |
36 | | mulcomnqg 7320 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
·Q 𝑔) = (𝑔 ·Q 𝑓)) |
37 | 36 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
·Q 𝑔) = (𝑔 ·Q 𝑓)) |
38 | 27, 32, 34, 35, 37 | caovord2d 6007 |
. . . . . . . . . . . . . 14
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((*Q‘𝑧) <Q
(*Q‘𝑣) ↔
((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤))) |
39 | 25, 38 | syl5ib 153 |
. . . . . . . . . . . . 13
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → (𝑣 <Q 𝑧 →
((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤))) |
40 | | mulcomnqg 7320 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ Q ∧
(*Q‘𝑣) ∈ Q) → (𝑣
·Q (*Q‘𝑣)) =
((*Q‘𝑣) ·Q 𝑣)) |
41 | 33, 40 | mpdan 418 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ Q →
(𝑣
·Q (*Q‘𝑣)) =
((*Q‘𝑣) ·Q 𝑣)) |
42 | | recidnq 7330 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ Q →
(𝑣
·Q (*Q‘𝑣)) =
1Q) |
43 | 41, 42 | eqtr3d 2200 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ Q →
((*Q‘𝑣) ·Q 𝑣) =
1Q) |
44 | | recidnq 7330 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ Q →
(𝑤
·Q (*Q‘𝑤)) =
1Q) |
45 | 43, 44 | oveqan12d 5860 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ (((*Q‘𝑣) ·Q 𝑣)
·Q (𝑤 ·Q
(*Q‘𝑤))) = (1Q
·Q
1Q)) |
46 | 45 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(((*Q‘𝑣) ·Q 𝑣)
·Q (𝑤 ·Q
(*Q‘𝑤))) = (1Q
·Q
1Q)) |
47 | | simpll 519 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → 𝑣 ∈ Q) |
48 | | mulassnqg 7321 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → ((𝑓
·Q 𝑔) ·Q ℎ) = (𝑓 ·Q (𝑔
·Q ℎ))) |
49 | 48 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ ((𝑓
·Q 𝑔) ·Q ℎ) = (𝑓 ·Q (𝑔
·Q ℎ))) |
50 | | recclnq 7329 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ Q →
(*Q‘𝑤) ∈ Q) |
51 | 35, 50 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(*Q‘𝑤) ∈ Q) |
52 | | mulclnq 7313 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
·Q 𝑔) ∈ Q) |
53 | 52 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
·Q 𝑔) ∈ Q) |
54 | 34, 47, 35, 37, 49, 51, 53 | caov4d 6022 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(((*Q‘𝑣) ·Q 𝑣)
·Q (𝑤 ·Q
(*Q‘𝑤))) =
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤)))) |
55 | 46, 54 | eqtr3d 2200 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(1Q ·Q
1Q) = (((*Q‘𝑣)
·Q 𝑤) ·Q (𝑣
·Q (*Q‘𝑤)))) |
56 | | 1nq 7303 |
. . . . . . . . . . . . . . . . . 18
⊢
1Q ∈ Q |
57 | | mulidnq 7326 |
. . . . . . . . . . . . . . . . . 18
⊢
(1Q ∈ Q →
(1Q ·Q
1Q) = 1Q) |
58 | 56, 57 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(1Q ·Q
1Q) = 1Q |
59 | 55, 58 | eqtr3di 2213 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤))) =
1Q) |
60 | | mulclnq 7313 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((*Q‘𝑣) ∈ Q ∧ 𝑤 ∈ Q) →
((*Q‘𝑣) ·Q 𝑤) ∈
Q) |
61 | 33, 60 | sylan 281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ ((*Q‘𝑣) ·Q 𝑤) ∈
Q) |
62 | | mulclnq 7313 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ Q ∧
(*Q‘𝑤) ∈ Q) → (𝑣
·Q (*Q‘𝑤)) ∈
Q) |
63 | 50, 62 | sylan2 284 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ (𝑣
·Q (*Q‘𝑤)) ∈
Q) |
64 | | recmulnqg 7328 |
. . . . . . . . . . . . . . . . . 18
⊢
((((*Q‘𝑣) ·Q 𝑤) ∈ Q ∧
(𝑣
·Q (*Q‘𝑤)) ∈ Q)
→
((*Q‘((*Q‘𝑣)
·Q 𝑤)) = (𝑣 ·Q
(*Q‘𝑤)) ↔
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤))) =
1Q)) |
65 | 61, 63, 64 | syl2anc 409 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→
((*Q‘((*Q‘𝑣)
·Q 𝑤)) = (𝑣 ·Q
(*Q‘𝑤)) ↔
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤))) =
1Q)) |
66 | 65 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((*Q‘((*Q‘𝑣)
·Q 𝑤)) = (𝑣 ·Q
(*Q‘𝑤)) ↔
(((*Q‘𝑣) ·Q 𝑤)
·Q (𝑣 ·Q
(*Q‘𝑤))) =
1Q)) |
67 | 59, 66 | mpbird 166 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
(*Q‘((*Q‘𝑣)
·Q 𝑤)) = (𝑣 ·Q
(*Q‘𝑤))) |
68 | 67 | eleq1d 2234 |
. . . . . . . . . . . . . 14
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴) ↔ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) |
69 | 68 | biimprd 157 |
. . . . . . . . . . . . 13
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → ((𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴) →
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴))) |
70 | | breq2 3985 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 =
((*Q‘𝑣) ·Q 𝑤) →
(((*Q‘𝑧) ·Q 𝑤) <Q
𝑦 ↔
((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤))) |
71 | | fveq2 5485 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 =
((*Q‘𝑣) ·Q 𝑤) →
(*Q‘𝑦) =
(*Q‘((*Q‘𝑣)
·Q 𝑤))) |
72 | 71 | eleq1d 2234 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 =
((*Q‘𝑣) ·Q 𝑤) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) ↔
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴))) |
73 | 70, 72 | anbi12d 465 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 =
((*Q‘𝑣) ·Q 𝑤) →
((((*Q‘𝑧) ·Q 𝑤) <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ↔
(((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)))) |
74 | 73 | spcegv 2813 |
. . . . . . . . . . . . . . . 16
⊢
(((*Q‘𝑣) ·Q 𝑤) ∈ Q →
((((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)) → ∃𝑦(((*Q‘𝑧)
·Q 𝑤) <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
75 | 61, 74 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ ((((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)) → ∃𝑦(((*Q‘𝑧)
·Q 𝑤) <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
76 | | recexpr.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
77 | 76 | recexprlemell 7559 |
. . . . . . . . . . . . . . 15
⊢
(((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵) ↔
∃𝑦(((*Q‘𝑧)
·Q 𝑤) <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) |
78 | 75, 77 | syl6ibr 161 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ ((((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵))) |
79 | 78 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((((*Q‘𝑧) ·Q 𝑤) <Q
((*Q‘𝑣) ·Q 𝑤) ∧
(*Q‘((*Q‘𝑣)
·Q 𝑤)) ∈ (2nd ‘𝐴)) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵))) |
80 | 39, 69, 79 | syl2and 293 |
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) → ((𝑣 <Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴)) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵))) |
81 | 24, 80 | mpd 13 |
. . . . . . . . . . 11
⊢ (((𝑣 ∈ Q ∧
𝑤 ∈ Q)
∧ (𝑣
<Q 𝑧 ∧ (𝑣 ·Q
(*Q‘𝑤)) ∈ (2nd ‘𝐴))) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵)) |
82 | 16, 21, 22, 23, 81 | syl22anc 1229 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) →
((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵)) |
83 | 30 | 3ad2ant3 1010 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑧 ∈
Q) |
84 | | mulidnq 7326 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ Q →
(𝑤
·Q 1Q) = 𝑤) |
85 | | mulcomnqg 7320 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ Q ∧
1Q ∈ Q) → (𝑤 ·Q
1Q) = (1Q
·Q 𝑤)) |
86 | 56, 85 | mpan2 422 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ Q →
(𝑤
·Q 1Q) =
(1Q ·Q 𝑤)) |
87 | 84, 86 | eqtr3d 2200 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ Q →
𝑤 =
(1Q ·Q 𝑤)) |
88 | 87 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ 𝑤 =
(1Q ·Q 𝑤)) |
89 | | recidnq 7330 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ Q →
(𝑧
·Q (*Q‘𝑧)) =
1Q) |
90 | 89 | oveq1d 5856 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ Q →
((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (1Q
·Q 𝑤)) |
91 | 90 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ ((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (1Q
·Q 𝑤)) |
92 | | mulassnqg 7321 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ Q ∧
(*Q‘𝑧) ∈ Q ∧ 𝑤 ∈ Q) →
((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
93 | 31, 92 | syl3an2 1262 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ Q ∧
𝑧 ∈ Q
∧ 𝑤 ∈
Q) → ((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
94 | 93 | 3anidm12 1285 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ ((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
95 | 88, 91, 94 | 3eqtr2d 2204 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ 𝑤 = (𝑧
·Q ((*Q‘𝑧)
·Q 𝑤))) |
96 | 83, 21, 95 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → 𝑤 = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
97 | | oveq2 5849 |
. . . . . . . . . . . 12
⊢ (𝑥 =
((*Q‘𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
98 | 97 | eqeq2d 2177 |
. . . . . . . . . . 11
⊢ (𝑥 =
((*Q‘𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤)))) |
99 | 98 | rspcev 2829 |
. . . . . . . . . 10
⊢
((((*Q‘𝑧) ·Q 𝑤) ∈ (1st
‘𝐵) ∧ 𝑤 = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (1st
‘𝐵)𝑤 = (𝑧 ·Q 𝑥)) |
100 | 82, 96, 99 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴)) ∧ 𝑣 <Q
𝑧) → ∃𝑥 ∈ (1st
‘𝐵)𝑤 = (𝑧 ·Q 𝑥)) |
101 | 100 | 3expia 1195 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) → (𝑣 <Q
𝑧 → ∃𝑥 ∈ (1st
‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
102 | 101 | reximdv 2566 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) →
(∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧 → ∃𝑧 ∈ (1st
‘𝐴)∃𝑥 ∈ (1st
‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
103 | 76 | recexprlempr 7569 |
. . . . . . . . 9
⊢ (𝐴 ∈ P →
𝐵 ∈
P) |
104 | | df-imp 7406 |
. . . . . . . . . 10
⊢
·P = (𝑦 ∈ P, 𝑤 ∈ P ↦ 〈{𝑢 ∈ Q ∣
∃𝑓 ∈
Q ∃𝑔
∈ Q (𝑓
∈ (1st ‘𝑦) ∧ 𝑔 ∈ (1st ‘𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢 ∈ Q ∣ ∃𝑓 ∈ Q
∃𝑔 ∈
Q (𝑓 ∈
(2nd ‘𝑦)
∧ 𝑔 ∈
(2nd ‘𝑤)
∧ 𝑢 = (𝑓
·Q 𝑔))}〉) |
105 | 104, 52 | genpelvl 7449 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑤 ∈
(1st ‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑥 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
106 | 103, 105 | mpdan 418 |
. . . . . . . 8
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑥 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
107 | 106 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) → (𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑥 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
108 | 102, 107 | sylibrd 168 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) →
(∃𝑧 ∈
(1st ‘𝐴)𝑣 <Q 𝑧 → 𝑤 ∈ (1st ‘(𝐴
·P 𝐵)))) |
109 | 12, 108 | mpd 13 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝑤
<Q 1Q) ∧ (𝑣 ∈ (1st
‘𝐴) ∧ (𝑣
·Q (*Q‘𝑤)) ∈ (2nd
‘𝐴))) → 𝑤 ∈ (1st
‘(𝐴
·P 𝐵))) |
110 | 9, 109 | rexlimddv 2587 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝑤
<Q 1Q) → 𝑤 ∈ (1st
‘(𝐴
·P 𝐵))) |
111 | 110 | ex 114 |
. . 3
⊢ (𝐴 ∈ P →
(𝑤
<Q 1Q → 𝑤 ∈ (1st
‘(𝐴
·P 𝐵)))) |
112 | 2, 111 | syl5bi 151 |
. 2
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘1P) → 𝑤 ∈ (1st ‘(𝐴
·P 𝐵)))) |
113 | 112 | ssrdv 3147 |
1
⊢ (𝐴 ∈ P →
(1st ‘1P) ⊆ (1st
‘(𝐴
·P 𝐵))) |