ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssl GIF version

Theorem recexprlem1ssl 7695
Description: The lower cut of one is a subset of the lower cut of 𝐴 ·P 𝐵. Lemma for recexpr 7700. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlem1ssl (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlem1ssl
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1prl 7617 . . . 4 (1st ‘1P) = {𝑤𝑤 <Q 1Q}
21abeq2i 2304 . . 3 (𝑤 ∈ (1st ‘1P) ↔ 𝑤 <Q 1Q)
3 rec1nq 7457 . . . . . . 7 (*Q‘1Q) = 1Q
4 ltrnqi 7483 . . . . . . 7 (𝑤 <Q 1Q → (*Q‘1Q) <Q (*Q𝑤))
53, 4eqbrtrrid 4066 . . . . . 6 (𝑤 <Q 1Q → 1Q <Q (*Q𝑤))
6 prop 7537 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prmuloc2 7629 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
86, 7sylan 283 . . . . . 6 ((𝐴P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
95, 8sylan2 286 . . . . 5 ((𝐴P𝑤 <Q 1Q) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
10 prnmaxl 7550 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
116, 10sylan 283 . . . . . . 7 ((𝐴P𝑣 ∈ (1st𝐴)) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
1211ad2ant2r 509 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
13 elprnql 7543 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → 𝑣Q)
146, 13sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑣 ∈ (1st𝐴)) → 𝑣Q)
1514ad2ant2r 509 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣Q)
16153adant3 1019 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑣Q)
17 simp1r 1024 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤 <Q 1Q)
18 ltrelnq 7427 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
1918brel 4712 . . . . . . . . . . . . 13 (𝑤 <Q 1Q → (𝑤Q ∧ 1QQ))
2019simpld 112 . . . . . . . . . . . 12 (𝑤 <Q 1Q𝑤Q)
2117, 20syl 14 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤Q)
22 simp3 1001 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑣 <Q 𝑧)
23 simp2r 1026 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
24 simpr 110 . . . . . . . . . . . 12 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)))
25 ltrnqi 7483 . . . . . . . . . . . . . 14 (𝑣 <Q 𝑧 → (*Q𝑧) <Q (*Q𝑣))
26 ltmnqg 7463 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
2726adantl 277 . . . . . . . . . . . . . . 15 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
28 simprl 529 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣 <Q 𝑧)
2918brel 4712 . . . . . . . . . . . . . . . . 17 (𝑣 <Q 𝑧 → (𝑣Q𝑧Q))
3029simprd 114 . . . . . . . . . . . . . . . 16 (𝑣 <Q 𝑧𝑧Q)
31 recclnq 7454 . . . . . . . . . . . . . . . 16 (𝑧Q → (*Q𝑧) ∈ Q)
3228, 30, 313syl 17 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑧) ∈ Q)
33 recclnq 7454 . . . . . . . . . . . . . . . 16 (𝑣Q → (*Q𝑣) ∈ Q)
3433ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑣) ∈ Q)
35 simplr 528 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑤Q)
36 mulcomnqg 7445 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
3736adantl 277 . . . . . . . . . . . . . . 15 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
3827, 32, 34, 35, 37caovord2d 6090 . . . . . . . . . . . . . 14 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q𝑧) <Q (*Q𝑣) ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3925, 38imbitrid 154 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 → ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
40 mulcomnqg 7445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣Q ∧ (*Q𝑣) ∈ Q) → (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣))
4133, 40mpdan 421 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣))
42 recidnq 7455 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = 1Q)
4341, 42eqtr3d 2228 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → ((*Q𝑣) ·Q 𝑣) = 1Q)
44 recidnq 7455 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
4543, 44oveqan12d 5938 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
4645adantr 276 . . . . . . . . . . . . . . . . . 18 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
47 simpll 527 . . . . . . . . . . . . . . . . . . 19 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣Q)
48 mulassnqg 7446 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔QQ) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
4948adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
50 recclnq 7454 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (*Q𝑤) ∈ Q)
5135, 50syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑤) ∈ Q)
52 mulclnq 7438 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
5352adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) ∈ Q)
5434, 47, 35, 37, 49, 51, 53caov4d 6105 . . . . . . . . . . . . . . . . . 18 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))))
5546, 54eqtr3d 2228 . . . . . . . . . . . . . . . . 17 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (1Q ·Q 1Q) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))))
56 1nq 7428 . . . . . . . . . . . . . . . . . 18 1QQ
57 mulidnq 7451 . . . . . . . . . . . . . . . . . 18 (1QQ → (1Q ·Q 1Q) = 1Q)
5856, 57ax-mp 5 . . . . . . . . . . . . . . . . 17 (1Q ·Q 1Q) = 1Q
5955, 58eqtr3di 2241 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q)
60 mulclnq 7438 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ∈ Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
6133, 60sylan 283 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
62 mulclnq 7438 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q ∧ (*Q𝑤) ∈ Q) → (𝑣 ·Q (*Q𝑤)) ∈ Q)
6350, 62sylan2 286 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → (𝑣 ·Q (*Q𝑤)) ∈ Q)
64 recmulnqg 7453 . . . . . . . . . . . . . . . . . 18 ((((*Q𝑣) ·Q 𝑤) ∈ Q ∧ (𝑣 ·Q (*Q𝑤)) ∈ Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6561, 63, 64syl2anc 411 . . . . . . . . . . . . . . . . 17 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6665adantr 276 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6759, 66mpbird 167 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)))
6867eleq1d 2262 . . . . . . . . . . . . . 14 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴) ↔ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)))
6968biimprd 158 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴) → (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)))
70 breq2 4034 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
71 fveq2 5555 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q𝑣) ·Q 𝑤)))
7271eleq1d 2262 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)))
7370, 72anbi12d 473 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴))))
7473spcegv 2849 . . . . . . . . . . . . . . . 16 (((*Q𝑣) ·Q 𝑤) ∈ Q → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
7561, 74syl 14 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
76 recexpr.1 . . . . . . . . . . . . . . . 16 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
7776recexprlemell 7684 . . . . . . . . . . . . . . 15 (((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵) ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
7875, 77imbitrrdi 162 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
7978adantr 276 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
8039, 69, 79syl2and 295 . . . . . . . . . . . 12 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
8124, 80mpd 13 . . . . . . . . . . 11 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵))
8216, 21, 22, 23, 81syl22anc 1250 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵))
83303ad2ant3 1022 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑧Q)
84 mulidnq 7451 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
85 mulcomnqg 7445 . . . . . . . . . . . . . . 15 ((𝑤Q ∧ 1QQ) → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8656, 85mpan2 425 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8784, 86eqtr3d 2228 . . . . . . . . . . . . 13 (𝑤Q𝑤 = (1Q ·Q 𝑤))
8887adantl 277 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → 𝑤 = (1Q ·Q 𝑤))
89 recidnq 7455 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
9089oveq1d 5934 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
9190adantr 276 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
92 mulassnqg 7446 . . . . . . . . . . . . . 14 ((𝑧Q ∧ (*Q𝑧) ∈ Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9331, 92syl3an2 1283 . . . . . . . . . . . . 13 ((𝑧Q𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
94933anidm12 1306 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9588, 91, 943eqtr2d 2232 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9683, 21, 95syl2anc 411 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
97 oveq2 5927 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9897eqeq2d 2205 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9998rspcev 2865 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵) ∧ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥))
10082, 96, 99syl2anc 411 . . . . . . . . 9 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥))
1011003expia 1207 . . . . . . . 8 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
102101reximdv 2595 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧 → ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10376recexprlempr 7694 . . . . . . . . 9 (𝐴P𝐵P)
104 df-imp 7531 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
105104, 52genpelvl 7574 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
106103, 105mpdan 421 . . . . . . . 8 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
107106ad2antrr 488 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
108102, 107sylibrd 169 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
10912, 108mpd 13 . . . . 5 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)))
1109, 109rexlimddv 2616 . . . 4 ((𝐴P𝑤 <Q 1Q) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)))
111110ex 115 . . 3 (𝐴P → (𝑤 <Q 1Q𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
1122, 111biimtrid 152 . 2 (𝐴P → (𝑤 ∈ (1st ‘1P) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
113112ssrdv 3186 1 (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wrex 2473  wss 3154  cop 3622   class class class wbr 4030  cfv 5255  (class class class)co 5919  1st c1st 6193  2nd c2nd 6194  Qcnq 7342  1Qc1q 7343   ·Q cmq 7345  *Qcrq 7346   <Q cltq 7347  Pcnp 7353  1Pc1p 7354   ·P cmp 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-imp 7531
This theorem is referenced by:  recexprlemex  7699
  Copyright terms: Public domain W3C validator