ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssl GIF version

Theorem recexprlem1ssl 7700
Description: The lower cut of one is a subset of the lower cut of 𝐴 ·P 𝐵. Lemma for recexpr 7705. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlem1ssl (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlem1ssl
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1prl 7622 . . . 4 (1st ‘1P) = {𝑤𝑤 <Q 1Q}
21abeq2i 2307 . . 3 (𝑤 ∈ (1st ‘1P) ↔ 𝑤 <Q 1Q)
3 rec1nq 7462 . . . . . . 7 (*Q‘1Q) = 1Q
4 ltrnqi 7488 . . . . . . 7 (𝑤 <Q 1Q → (*Q‘1Q) <Q (*Q𝑤))
53, 4eqbrtrrid 4069 . . . . . 6 (𝑤 <Q 1Q → 1Q <Q (*Q𝑤))
6 prop 7542 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prmuloc2 7634 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
86, 7sylan 283 . . . . . 6 ((𝐴P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
95, 8sylan2 286 . . . . 5 ((𝐴P𝑤 <Q 1Q) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
10 prnmaxl 7555 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
116, 10sylan 283 . . . . . . 7 ((𝐴P𝑣 ∈ (1st𝐴)) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
1211ad2ant2r 509 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
13 elprnql 7548 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → 𝑣Q)
146, 13sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑣 ∈ (1st𝐴)) → 𝑣Q)
1514ad2ant2r 509 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣Q)
16153adant3 1019 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑣Q)
17 simp1r 1024 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤 <Q 1Q)
18 ltrelnq 7432 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
1918brel 4715 . . . . . . . . . . . . 13 (𝑤 <Q 1Q → (𝑤Q ∧ 1QQ))
2019simpld 112 . . . . . . . . . . . 12 (𝑤 <Q 1Q𝑤Q)
2117, 20syl 14 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤Q)
22 simp3 1001 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑣 <Q 𝑧)
23 simp2r 1026 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
24 simpr 110 . . . . . . . . . . . 12 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)))
25 ltrnqi 7488 . . . . . . . . . . . . . 14 (𝑣 <Q 𝑧 → (*Q𝑧) <Q (*Q𝑣))
26 ltmnqg 7468 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
2726adantl 277 . . . . . . . . . . . . . . 15 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
28 simprl 529 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣 <Q 𝑧)
2918brel 4715 . . . . . . . . . . . . . . . . 17 (𝑣 <Q 𝑧 → (𝑣Q𝑧Q))
3029simprd 114 . . . . . . . . . . . . . . . 16 (𝑣 <Q 𝑧𝑧Q)
31 recclnq 7459 . . . . . . . . . . . . . . . 16 (𝑧Q → (*Q𝑧) ∈ Q)
3228, 30, 313syl 17 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑧) ∈ Q)
33 recclnq 7459 . . . . . . . . . . . . . . . 16 (𝑣Q → (*Q𝑣) ∈ Q)
3433ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑣) ∈ Q)
35 simplr 528 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑤Q)
36 mulcomnqg 7450 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
3736adantl 277 . . . . . . . . . . . . . . 15 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
3827, 32, 34, 35, 37caovord2d 6093 . . . . . . . . . . . . . 14 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q𝑧) <Q (*Q𝑣) ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3925, 38imbitrid 154 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 → ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
40 mulcomnqg 7450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣Q ∧ (*Q𝑣) ∈ Q) → (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣))
4133, 40mpdan 421 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣))
42 recidnq 7460 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = 1Q)
4341, 42eqtr3d 2231 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → ((*Q𝑣) ·Q 𝑣) = 1Q)
44 recidnq 7460 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
4543, 44oveqan12d 5941 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
4645adantr 276 . . . . . . . . . . . . . . . . . 18 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
47 simpll 527 . . . . . . . . . . . . . . . . . . 19 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣Q)
48 mulassnqg 7451 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔QQ) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
4948adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
50 recclnq 7459 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (*Q𝑤) ∈ Q)
5135, 50syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑤) ∈ Q)
52 mulclnq 7443 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
5352adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) ∈ Q)
5434, 47, 35, 37, 49, 51, 53caov4d 6108 . . . . . . . . . . . . . . . . . 18 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))))
5546, 54eqtr3d 2231 . . . . . . . . . . . . . . . . 17 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (1Q ·Q 1Q) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))))
56 1nq 7433 . . . . . . . . . . . . . . . . . 18 1QQ
57 mulidnq 7456 . . . . . . . . . . . . . . . . . 18 (1QQ → (1Q ·Q 1Q) = 1Q)
5856, 57ax-mp 5 . . . . . . . . . . . . . . . . 17 (1Q ·Q 1Q) = 1Q
5955, 58eqtr3di 2244 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q)
60 mulclnq 7443 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ∈ Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
6133, 60sylan 283 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
62 mulclnq 7443 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q ∧ (*Q𝑤) ∈ Q) → (𝑣 ·Q (*Q𝑤)) ∈ Q)
6350, 62sylan2 286 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → (𝑣 ·Q (*Q𝑤)) ∈ Q)
64 recmulnqg 7458 . . . . . . . . . . . . . . . . . 18 ((((*Q𝑣) ·Q 𝑤) ∈ Q ∧ (𝑣 ·Q (*Q𝑤)) ∈ Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6561, 63, 64syl2anc 411 . . . . . . . . . . . . . . . . 17 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6665adantr 276 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6759, 66mpbird 167 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)))
6867eleq1d 2265 . . . . . . . . . . . . . 14 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴) ↔ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)))
6968biimprd 158 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴) → (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)))
70 breq2 4037 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
71 fveq2 5558 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q𝑣) ·Q 𝑤)))
7271eleq1d 2265 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)))
7370, 72anbi12d 473 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴))))
7473spcegv 2852 . . . . . . . . . . . . . . . 16 (((*Q𝑣) ·Q 𝑤) ∈ Q → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
7561, 74syl 14 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
76 recexpr.1 . . . . . . . . . . . . . . . 16 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
7776recexprlemell 7689 . . . . . . . . . . . . . . 15 (((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵) ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
7875, 77imbitrrdi 162 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
7978adantr 276 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
8039, 69, 79syl2and 295 . . . . . . . . . . . 12 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
8124, 80mpd 13 . . . . . . . . . . 11 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵))
8216, 21, 22, 23, 81syl22anc 1250 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵))
83303ad2ant3 1022 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑧Q)
84 mulidnq 7456 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
85 mulcomnqg 7450 . . . . . . . . . . . . . . 15 ((𝑤Q ∧ 1QQ) → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8656, 85mpan2 425 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8784, 86eqtr3d 2231 . . . . . . . . . . . . 13 (𝑤Q𝑤 = (1Q ·Q 𝑤))
8887adantl 277 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → 𝑤 = (1Q ·Q 𝑤))
89 recidnq 7460 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
9089oveq1d 5937 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
9190adantr 276 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
92 mulassnqg 7451 . . . . . . . . . . . . . 14 ((𝑧Q ∧ (*Q𝑧) ∈ Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9331, 92syl3an2 1283 . . . . . . . . . . . . 13 ((𝑧Q𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
94933anidm12 1306 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9588, 91, 943eqtr2d 2235 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9683, 21, 95syl2anc 411 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
97 oveq2 5930 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9897eqeq2d 2208 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9998rspcev 2868 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵) ∧ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥))
10082, 96, 99syl2anc 411 . . . . . . . . 9 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥))
1011003expia 1207 . . . . . . . 8 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
102101reximdv 2598 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧 → ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10376recexprlempr 7699 . . . . . . . . 9 (𝐴P𝐵P)
104 df-imp 7536 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
105104, 52genpelvl 7579 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
106103, 105mpdan 421 . . . . . . . 8 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
107106ad2antrr 488 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
108102, 107sylibrd 169 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
10912, 108mpd 13 . . . . 5 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)))
1109, 109rexlimddv 2619 . . . 4 ((𝐴P𝑤 <Q 1Q) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)))
111110ex 115 . . 3 (𝐴P → (𝑤 <Q 1Q𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
1122, 111biimtrid 152 . 2 (𝐴P → (𝑤 ∈ (1st ‘1P) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
113112ssrdv 3189 1 (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wrex 2476  wss 3157  cop 3625   class class class wbr 4033  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Qcnq 7347  1Qc1q 7348   ·Q cmq 7350  *Qcrq 7351   <Q cltq 7352  Pcnp 7358  1Pc1p 7359   ·P cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-imp 7536
This theorem is referenced by:  recexprlemex  7704
  Copyright terms: Public domain W3C validator