ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssl GIF version

Theorem recexprlem1ssl 7623
Description: The lower cut of one is a subset of the lower cut of 𝐴 ·P 𝐵. Lemma for recexpr 7628. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlem1ssl (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlem1ssl
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1prl 7545 . . . 4 (1st ‘1P) = {𝑤𝑤 <Q 1Q}
21abeq2i 2288 . . 3 (𝑤 ∈ (1st ‘1P) ↔ 𝑤 <Q 1Q)
3 rec1nq 7385 . . . . . . 7 (*Q‘1Q) = 1Q
4 ltrnqi 7411 . . . . . . 7 (𝑤 <Q 1Q → (*Q‘1Q) <Q (*Q𝑤))
53, 4eqbrtrrid 4036 . . . . . 6 (𝑤 <Q 1Q → 1Q <Q (*Q𝑤))
6 prop 7465 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prmuloc2 7557 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
86, 7sylan 283 . . . . . 6 ((𝐴P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
95, 8sylan2 286 . . . . 5 ((𝐴P𝑤 <Q 1Q) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
10 prnmaxl 7478 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
116, 10sylan 283 . . . . . . 7 ((𝐴P𝑣 ∈ (1st𝐴)) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
1211ad2ant2r 509 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
13 elprnql 7471 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → 𝑣Q)
146, 13sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑣 ∈ (1st𝐴)) → 𝑣Q)
1514ad2ant2r 509 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣Q)
16153adant3 1017 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑣Q)
17 simp1r 1022 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤 <Q 1Q)
18 ltrelnq 7355 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
1918brel 4675 . . . . . . . . . . . . 13 (𝑤 <Q 1Q → (𝑤Q ∧ 1QQ))
2019simpld 112 . . . . . . . . . . . 12 (𝑤 <Q 1Q𝑤Q)
2117, 20syl 14 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤Q)
22 simp3 999 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑣 <Q 𝑧)
23 simp2r 1024 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
24 simpr 110 . . . . . . . . . . . 12 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)))
25 ltrnqi 7411 . . . . . . . . . . . . . 14 (𝑣 <Q 𝑧 → (*Q𝑧) <Q (*Q𝑣))
26 ltmnqg 7391 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
2726adantl 277 . . . . . . . . . . . . . . 15 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
28 simprl 529 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣 <Q 𝑧)
2918brel 4675 . . . . . . . . . . . . . . . . 17 (𝑣 <Q 𝑧 → (𝑣Q𝑧Q))
3029simprd 114 . . . . . . . . . . . . . . . 16 (𝑣 <Q 𝑧𝑧Q)
31 recclnq 7382 . . . . . . . . . . . . . . . 16 (𝑧Q → (*Q𝑧) ∈ Q)
3228, 30, 313syl 17 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑧) ∈ Q)
33 recclnq 7382 . . . . . . . . . . . . . . . 16 (𝑣Q → (*Q𝑣) ∈ Q)
3433ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑣) ∈ Q)
35 simplr 528 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑤Q)
36 mulcomnqg 7373 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
3736adantl 277 . . . . . . . . . . . . . . 15 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
3827, 32, 34, 35, 37caovord2d 6038 . . . . . . . . . . . . . 14 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q𝑧) <Q (*Q𝑣) ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3925, 38imbitrid 154 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 → ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
40 mulcomnqg 7373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣Q ∧ (*Q𝑣) ∈ Q) → (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣))
4133, 40mpdan 421 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣))
42 recidnq 7383 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = 1Q)
4341, 42eqtr3d 2212 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → ((*Q𝑣) ·Q 𝑣) = 1Q)
44 recidnq 7383 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
4543, 44oveqan12d 5888 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
4645adantr 276 . . . . . . . . . . . . . . . . . 18 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
47 simpll 527 . . . . . . . . . . . . . . . . . . 19 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣Q)
48 mulassnqg 7374 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔QQ) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
4948adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
50 recclnq 7382 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (*Q𝑤) ∈ Q)
5135, 50syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑤) ∈ Q)
52 mulclnq 7366 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
5352adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) ∈ Q)
5434, 47, 35, 37, 49, 51, 53caov4d 6053 . . . . . . . . . . . . . . . . . 18 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))))
5546, 54eqtr3d 2212 . . . . . . . . . . . . . . . . 17 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (1Q ·Q 1Q) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))))
56 1nq 7356 . . . . . . . . . . . . . . . . . 18 1QQ
57 mulidnq 7379 . . . . . . . . . . . . . . . . . 18 (1QQ → (1Q ·Q 1Q) = 1Q)
5856, 57ax-mp 5 . . . . . . . . . . . . . . . . 17 (1Q ·Q 1Q) = 1Q
5955, 58eqtr3di 2225 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q)
60 mulclnq 7366 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ∈ Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
6133, 60sylan 283 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
62 mulclnq 7366 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q ∧ (*Q𝑤) ∈ Q) → (𝑣 ·Q (*Q𝑤)) ∈ Q)
6350, 62sylan2 286 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → (𝑣 ·Q (*Q𝑤)) ∈ Q)
64 recmulnqg 7381 . . . . . . . . . . . . . . . . . 18 ((((*Q𝑣) ·Q 𝑤) ∈ Q ∧ (𝑣 ·Q (*Q𝑤)) ∈ Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6561, 63, 64syl2anc 411 . . . . . . . . . . . . . . . . 17 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6665adantr 276 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6759, 66mpbird 167 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)))
6867eleq1d 2246 . . . . . . . . . . . . . 14 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴) ↔ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)))
6968biimprd 158 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴) → (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)))
70 breq2 4004 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
71 fveq2 5511 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q𝑣) ·Q 𝑤)))
7271eleq1d 2246 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)))
7370, 72anbi12d 473 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴))))
7473spcegv 2825 . . . . . . . . . . . . . . . 16 (((*Q𝑣) ·Q 𝑤) ∈ Q → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
7561, 74syl 14 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
76 recexpr.1 . . . . . . . . . . . . . . . 16 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
7776recexprlemell 7612 . . . . . . . . . . . . . . 15 (((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵) ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
7875, 77syl6ibr 162 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
7978adantr 276 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
8039, 69, 79syl2and 295 . . . . . . . . . . . 12 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
8124, 80mpd 13 . . . . . . . . . . 11 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵))
8216, 21, 22, 23, 81syl22anc 1239 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵))
83303ad2ant3 1020 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑧Q)
84 mulidnq 7379 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
85 mulcomnqg 7373 . . . . . . . . . . . . . . 15 ((𝑤Q ∧ 1QQ) → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8656, 85mpan2 425 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8784, 86eqtr3d 2212 . . . . . . . . . . . . 13 (𝑤Q𝑤 = (1Q ·Q 𝑤))
8887adantl 277 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → 𝑤 = (1Q ·Q 𝑤))
89 recidnq 7383 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
9089oveq1d 5884 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
9190adantr 276 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
92 mulassnqg 7374 . . . . . . . . . . . . . 14 ((𝑧Q ∧ (*Q𝑧) ∈ Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9331, 92syl3an2 1272 . . . . . . . . . . . . 13 ((𝑧Q𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
94933anidm12 1295 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9588, 91, 943eqtr2d 2216 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9683, 21, 95syl2anc 411 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
97 oveq2 5877 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9897eqeq2d 2189 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9998rspcev 2841 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵) ∧ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥))
10082, 96, 99syl2anc 411 . . . . . . . . 9 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥))
1011003expia 1205 . . . . . . . 8 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
102101reximdv 2578 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧 → ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10376recexprlempr 7622 . . . . . . . . 9 (𝐴P𝐵P)
104 df-imp 7459 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
105104, 52genpelvl 7502 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
106103, 105mpdan 421 . . . . . . . 8 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
107106ad2antrr 488 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
108102, 107sylibrd 169 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
10912, 108mpd 13 . . . . 5 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)))
1109, 109rexlimddv 2599 . . . 4 ((𝐴P𝑤 <Q 1Q) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)))
111110ex 115 . . 3 (𝐴P → (𝑤 <Q 1Q𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
1122, 111biimtrid 152 . 2 (𝐴P → (𝑤 ∈ (1st ‘1P) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
113112ssrdv 3161 1 (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wex 1492  wcel 2148  {cab 2163  wrex 2456  wss 3129  cop 3594   class class class wbr 4000  cfv 5212  (class class class)co 5869  1st c1st 6133  2nd c2nd 6134  Qcnq 7270  1Qc1q 7271   ·Q cmq 7273  *Qcrq 7274   <Q cltq 7275  Pcnp 7281  1Pc1p 7282   ·P cmp 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-i1p 7457  df-imp 7459
This theorem is referenced by:  recexprlemex  7627
  Copyright terms: Public domain W3C validator