![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2sqlem8a | GIF version |
Description: Lemma for 2sqlem8 15280. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
2sqlem7.2 | ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
2sqlem9.5 | ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
2sqlem9.7 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
2sqlem8.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
2sqlem8.m | ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) |
2sqlem8.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
2sqlem8.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
2sqlem8.3 | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
2sqlem8.4 | ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) |
2sqlem8.c | ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
2sqlem8.d | ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
2sqlem8a | ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqlem8.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 2sqlem8.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) | |
3 | eluz2b3 9672 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) | |
4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) |
5 | 4 | simpld 112 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
6 | 2sqlem8.c | . . . 4 ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
7 | 1, 5, 6 | 4sqlem5 12523 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴 − 𝐶) / 𝑀) ∈ ℤ)) |
8 | 7 | simpld 112 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
9 | 2sqlem8.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
10 | 2sqlem8.d | . . . 4 ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
11 | 9, 5, 10 | 4sqlem5 12523 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵 − 𝐷) / 𝑀) ∈ ℤ)) |
12 | 11 | simpld 112 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℤ) |
13 | 4 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 1) |
14 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0) | |
15 | 1, 5, 6, 14 | 4sqlem9 12527 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2)) |
16 | 15 | ex 115 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2))) |
17 | eluzelz 9604 | . . . . . . . . . 10 ⊢ (𝑀 ∈ (ℤ≥‘2) → 𝑀 ∈ ℤ) | |
18 | 2, 17 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
19 | dvdssq 12171 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) | |
20 | 18, 1, 19 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) |
21 | 16, 20 | sylibrd 169 | . . . . . . 7 ⊢ (𝜑 → ((𝐶↑2) = 0 → 𝑀 ∥ 𝐴)) |
22 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0) | |
23 | 9, 5, 10, 22 | 4sqlem9 12527 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2)) |
24 | 23 | ex 115 | . . . . . . . 8 ⊢ (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2))) |
25 | dvdssq 12171 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) | |
26 | 18, 9, 25 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) |
27 | 24, 26 | sylibrd 169 | . . . . . . 7 ⊢ (𝜑 → ((𝐷↑2) = 0 → 𝑀 ∥ 𝐵)) |
28 | 2sqlem8.3 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
29 | 1ne0 9052 | . . . . . . . . . . . 12 ⊢ 1 ≠ 0 | |
30 | 29 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝜑 → 1 ≠ 0) |
31 | 28, 30 | eqnetrd 2388 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 gcd 𝐵) ≠ 0) |
32 | 31 | neneqd 2385 | . . . . . . . . 9 ⊢ (𝜑 → ¬ (𝐴 gcd 𝐵) = 0) |
33 | gcdeq0 12117 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | |
34 | 1, 9, 33 | syl2anc 411 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
35 | 32, 34 | mtbid 673 | . . . . . . . 8 ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
36 | dvdslegcd 12104 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) | |
37 | 18, 1, 9, 35, 36 | syl31anc 1252 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
38 | 21, 27, 37 | syl2and 295 | . . . . . 6 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
39 | 28 | breq2d 4042 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1)) |
40 | nnle1eq1 9008 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1)) | |
41 | 5, 40 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1)) |
42 | 39, 41 | bitrd 188 | . . . . . 6 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1)) |
43 | 38, 42 | sylibd 149 | . . . . 5 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1)) |
44 | 43 | necon3ad 2406 | . . . 4 ⊢ (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))) |
45 | 13, 44 | mpd 13 | . . 3 ⊢ (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)) |
46 | 8 | zcnd 9443 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
47 | sqeq0 10676 | . . . . 5 ⊢ (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) | |
48 | 46, 47 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) |
49 | 12 | zcnd 9443 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
50 | sqeq0 10676 | . . . . 5 ⊢ (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) | |
51 | 49, 50 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) |
52 | 48, 51 | anbi12d 473 | . . 3 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0))) |
53 | 45, 52 | mtbid 673 | . 2 ⊢ (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0)) |
54 | gcdn0cl 12102 | . 2 ⊢ (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ) | |
55 | 8, 12, 53, 54 | syl21anc 1248 | 1 ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 ≠ wne 2364 ∀wral 2472 ∃wrex 2473 class class class wbr 4030 ↦ cmpt 4091 ran crn 4661 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 0cc0 7874 1c1 7875 + caddc 7877 ≤ cle 8057 − cmin 8192 / cdiv 8693 ℕcn 8984 2c2 9035 ℤcz 9320 ℤ≥cuz 9595 ...cfz 10077 mod cmo 10396 ↑cexp 10612 abscabs 11144 ∥ cdvds 11933 gcd cgcd 12082 ℤ[i]cgz 12510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-sup 7045 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-fl 10342 df-mod 10397 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-dvds 11934 df-gcd 12083 |
This theorem is referenced by: 2sqlem8 15280 |
Copyright terms: Public domain | W3C validator |