| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2sqlem8a | GIF version | ||
| Description: Lemma for 2sqlem8 15600. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| Ref | Expression |
|---|---|
| 2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
| 2sqlem7.2 | ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
| 2sqlem9.5 | ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
| 2sqlem9.7 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
| 2sqlem8.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2sqlem8.m | ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) |
| 2sqlem8.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 2sqlem8.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 2sqlem8.3 | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
| 2sqlem8.4 | ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) |
| 2sqlem8.c | ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| 2sqlem8.d | ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| Ref | Expression |
|---|---|
| 2sqlem8a | ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sqlem8.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 2sqlem8.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) | |
| 3 | eluz2b3 9725 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) | |
| 4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) |
| 5 | 4 | simpld 112 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 6 | 2sqlem8.c | . . . 4 ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 7 | 1, 5, 6 | 4sqlem5 12705 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴 − 𝐶) / 𝑀) ∈ ℤ)) |
| 8 | 7 | simpld 112 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 9 | 2sqlem8.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
| 10 | 2sqlem8.d | . . . 4 ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 11 | 9, 5, 10 | 4sqlem5 12705 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵 − 𝐷) / 𝑀) ∈ ℤ)) |
| 12 | 11 | simpld 112 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℤ) |
| 13 | 4 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 1) |
| 14 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0) | |
| 15 | 1, 5, 6, 14 | 4sqlem9 12709 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2)) |
| 16 | 15 | ex 115 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2))) |
| 17 | eluzelz 9657 | . . . . . . . . . 10 ⊢ (𝑀 ∈ (ℤ≥‘2) → 𝑀 ∈ ℤ) | |
| 18 | 2, 17 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 19 | dvdssq 12352 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) | |
| 20 | 18, 1, 19 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) |
| 21 | 16, 20 | sylibrd 169 | . . . . . . 7 ⊢ (𝜑 → ((𝐶↑2) = 0 → 𝑀 ∥ 𝐴)) |
| 22 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0) | |
| 23 | 9, 5, 10, 22 | 4sqlem9 12709 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2)) |
| 24 | 23 | ex 115 | . . . . . . . 8 ⊢ (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2))) |
| 25 | dvdssq 12352 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) | |
| 26 | 18, 9, 25 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) |
| 27 | 24, 26 | sylibrd 169 | . . . . . . 7 ⊢ (𝜑 → ((𝐷↑2) = 0 → 𝑀 ∥ 𝐵)) |
| 28 | 2sqlem8.3 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
| 29 | 1ne0 9104 | . . . . . . . . . . . 12 ⊢ 1 ≠ 0 | |
| 30 | 29 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝜑 → 1 ≠ 0) |
| 31 | 28, 30 | eqnetrd 2400 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 gcd 𝐵) ≠ 0) |
| 32 | 31 | neneqd 2397 | . . . . . . . . 9 ⊢ (𝜑 → ¬ (𝐴 gcd 𝐵) = 0) |
| 33 | gcdeq0 12298 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | |
| 34 | 1, 9, 33 | syl2anc 411 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 35 | 32, 34 | mtbid 674 | . . . . . . . 8 ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| 36 | dvdslegcd 12285 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) | |
| 37 | 18, 1, 9, 35, 36 | syl31anc 1253 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
| 38 | 21, 27, 37 | syl2and 295 | . . . . . 6 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
| 39 | 28 | breq2d 4056 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1)) |
| 40 | nnle1eq1 9060 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1)) | |
| 41 | 5, 40 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1)) |
| 42 | 39, 41 | bitrd 188 | . . . . . 6 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1)) |
| 43 | 38, 42 | sylibd 149 | . . . . 5 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1)) |
| 44 | 43 | necon3ad 2418 | . . . 4 ⊢ (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))) |
| 45 | 13, 44 | mpd 13 | . . 3 ⊢ (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)) |
| 46 | 8 | zcnd 9496 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 47 | sqeq0 10747 | . . . . 5 ⊢ (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) | |
| 48 | 46, 47 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) |
| 49 | 12 | zcnd 9496 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 50 | sqeq0 10747 | . . . . 5 ⊢ (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) | |
| 51 | 49, 50 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) |
| 52 | 48, 51 | anbi12d 473 | . . 3 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0))) |
| 53 | 45, 52 | mtbid 674 | . 2 ⊢ (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0)) |
| 54 | gcdn0cl 12283 | . 2 ⊢ (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ) | |
| 55 | 8, 12, 53, 54 | syl21anc 1249 | 1 ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 {cab 2191 ≠ wne 2376 ∀wral 2484 ∃wrex 2485 class class class wbr 4044 ↦ cmpt 4105 ran crn 4676 ‘cfv 5271 (class class class)co 5944 ℂcc 7923 0cc0 7925 1c1 7926 + caddc 7928 ≤ cle 8108 − cmin 8243 / cdiv 8745 ℕcn 9036 2c2 9087 ℤcz 9372 ℤ≥cuz 9648 ...cfz 10130 mod cmo 10467 ↑cexp 10683 abscabs 11308 ∥ cdvds 12098 gcd cgcd 12274 ℤ[i]cgz 12692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-fl 10413 df-mod 10468 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-dvds 12099 df-gcd 12275 |
| This theorem is referenced by: 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |