![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2sqlem8a | GIF version |
Description: Lemma for 2sqlem8 14509. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
2sqlem7.2 | ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
2sqlem9.5 | ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
2sqlem9.7 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
2sqlem8.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
2sqlem8.m | ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) |
2sqlem8.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
2sqlem8.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
2sqlem8.3 | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
2sqlem8.4 | ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) |
2sqlem8.c | ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
2sqlem8.d | ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
2sqlem8a | ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqlem8.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 2sqlem8.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) | |
3 | eluz2b3 9606 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) | |
4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) |
5 | 4 | simpld 112 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
6 | 2sqlem8.c | . . . 4 ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
7 | 1, 5, 6 | 4sqlem5 12382 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴 − 𝐶) / 𝑀) ∈ ℤ)) |
8 | 7 | simpld 112 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
9 | 2sqlem8.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
10 | 2sqlem8.d | . . . 4 ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
11 | 9, 5, 10 | 4sqlem5 12382 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵 − 𝐷) / 𝑀) ∈ ℤ)) |
12 | 11 | simpld 112 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℤ) |
13 | 4 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 1) |
14 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0) | |
15 | 1, 5, 6, 14 | 4sqlem9 12386 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2)) |
16 | 15 | ex 115 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2))) |
17 | eluzelz 9539 | . . . . . . . . . 10 ⊢ (𝑀 ∈ (ℤ≥‘2) → 𝑀 ∈ ℤ) | |
18 | 2, 17 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
19 | dvdssq 12034 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) | |
20 | 18, 1, 19 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) |
21 | 16, 20 | sylibrd 169 | . . . . . . 7 ⊢ (𝜑 → ((𝐶↑2) = 0 → 𝑀 ∥ 𝐴)) |
22 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0) | |
23 | 9, 5, 10, 22 | 4sqlem9 12386 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2)) |
24 | 23 | ex 115 | . . . . . . . 8 ⊢ (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2))) |
25 | dvdssq 12034 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) | |
26 | 18, 9, 25 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) |
27 | 24, 26 | sylibrd 169 | . . . . . . 7 ⊢ (𝜑 → ((𝐷↑2) = 0 → 𝑀 ∥ 𝐵)) |
28 | 2sqlem8.3 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
29 | 1ne0 8989 | . . . . . . . . . . . 12 ⊢ 1 ≠ 0 | |
30 | 29 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝜑 → 1 ≠ 0) |
31 | 28, 30 | eqnetrd 2371 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 gcd 𝐵) ≠ 0) |
32 | 31 | neneqd 2368 | . . . . . . . . 9 ⊢ (𝜑 → ¬ (𝐴 gcd 𝐵) = 0) |
33 | gcdeq0 11980 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | |
34 | 1, 9, 33 | syl2anc 411 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
35 | 32, 34 | mtbid 672 | . . . . . . . 8 ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
36 | dvdslegcd 11967 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) | |
37 | 18, 1, 9, 35, 36 | syl31anc 1241 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
38 | 21, 27, 37 | syl2and 295 | . . . . . 6 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
39 | 28 | breq2d 4017 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1)) |
40 | nnle1eq1 8945 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1)) | |
41 | 5, 40 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1)) |
42 | 39, 41 | bitrd 188 | . . . . . 6 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1)) |
43 | 38, 42 | sylibd 149 | . . . . 5 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1)) |
44 | 43 | necon3ad 2389 | . . . 4 ⊢ (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))) |
45 | 13, 44 | mpd 13 | . . 3 ⊢ (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)) |
46 | 8 | zcnd 9378 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
47 | sqeq0 10585 | . . . . 5 ⊢ (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) | |
48 | 46, 47 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) |
49 | 12 | zcnd 9378 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
50 | sqeq0 10585 | . . . . 5 ⊢ (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) | |
51 | 49, 50 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) |
52 | 48, 51 | anbi12d 473 | . . 3 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0))) |
53 | 45, 52 | mtbid 672 | . 2 ⊢ (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0)) |
54 | gcdn0cl 11965 | . 2 ⊢ (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ) | |
55 | 8, 12, 53, 54 | syl21anc 1237 | 1 ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {cab 2163 ≠ wne 2347 ∀wral 2455 ∃wrex 2456 class class class wbr 4005 ↦ cmpt 4066 ran crn 4629 ‘cfv 5218 (class class class)co 5877 ℂcc 7811 0cc0 7813 1c1 7814 + caddc 7816 ≤ cle 7995 − cmin 8130 / cdiv 8631 ℕcn 8921 2c2 8972 ℤcz 9255 ℤ≥cuz 9530 ...cfz 10010 mod cmo 10324 ↑cexp 10521 abscabs 11008 ∥ cdvds 11796 gcd cgcd 11945 ℤ[i]cgz 12369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-sup 6985 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-fz 10011 df-fzo 10145 df-fl 10272 df-mod 10325 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-dvds 11797 df-gcd 11946 |
This theorem is referenced by: 2sqlem8 14509 |
Copyright terms: Public domain | W3C validator |