ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem8a GIF version

Theorem 2sqlem8a 13752
Description: Lemma for 2sqlem8 13753. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
2sqlem8a (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8a
StepHypRef Expression
1 2sqlem8.1 . . . 4 (𝜑𝐴 ∈ ℤ)
2 2sqlem8.m . . . . . 6 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 9563 . . . . . 6 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 121 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 111 . . . 4 (𝜑𝑀 ∈ ℕ)
6 2sqlem8.c . . . 4 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
71, 5, 64sqlem5 12334 . . 3 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
87simpld 111 . 2 (𝜑𝐶 ∈ ℤ)
9 2sqlem8.2 . . . 4 (𝜑𝐵 ∈ ℤ)
10 2sqlem8.d . . . 4 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 5, 104sqlem5 12334 . . 3 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1211simpld 111 . 2 (𝜑𝐷 ∈ ℤ)
134simprd 113 . . . 4 (𝜑𝑀 ≠ 1)
14 simpr 109 . . . . . . . . . 10 ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0)
151, 5, 6, 144sqlem9 12338 . . . . . . . . 9 ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2))
1615ex 114 . . . . . . . 8 (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2)))
17 eluzelz 9496 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
182, 17syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
19 dvdssq 11986 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2018, 1, 19syl2anc 409 . . . . . . . 8 (𝜑 → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2116, 20sylibrd 168 . . . . . . 7 (𝜑 → ((𝐶↑2) = 0 → 𝑀𝐴))
22 simpr 109 . . . . . . . . . 10 ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0)
239, 5, 10, 224sqlem9 12338 . . . . . . . . 9 ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2))
2423ex 114 . . . . . . . 8 (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2)))
25 dvdssq 11986 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2618, 9, 25syl2anc 409 . . . . . . . 8 (𝜑 → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2724, 26sylibrd 168 . . . . . . 7 (𝜑 → ((𝐷↑2) = 0 → 𝑀𝐵))
28 2sqlem8.3 . . . . . . . . . . 11 (𝜑 → (𝐴 gcd 𝐵) = 1)
29 1ne0 8946 . . . . . . . . . . . 12 1 ≠ 0
3029a1i 9 . . . . . . . . . . 11 (𝜑 → 1 ≠ 0)
3128, 30eqnetrd 2364 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
3231neneqd 2361 . . . . . . . . 9 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
33 gcdeq0 11932 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
341, 9, 33syl2anc 409 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3532, 34mtbid 667 . . . . . . . 8 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
36 dvdslegcd 11919 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3718, 1, 9, 35, 36syl31anc 1236 . . . . . . 7 (𝜑 → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3821, 27, 37syl2and 293 . . . . . 6 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3928breq2d 4001 . . . . . . 7 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1))
40 nnle1eq1 8902 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1))
415, 40syl 14 . . . . . . 7 (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1))
4239, 41bitrd 187 . . . . . 6 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1))
4338, 42sylibd 148 . . . . 5 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1))
4443necon3ad 2382 . . . 4 (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)))
4513, 44mpd 13 . . 3 (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))
468zcnd 9335 . . . . 5 (𝜑𝐶 ∈ ℂ)
47 sqeq0 10539 . . . . 5 (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4846, 47syl 14 . . . 4 (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4912zcnd 9335 . . . . 5 (𝜑𝐷 ∈ ℂ)
50 sqeq0 10539 . . . . 5 (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5149, 50syl 14 . . . 4 (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5248, 51anbi12d 470 . . 3 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0)))
5345, 52mtbid 667 . 2 (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0))
54 gcdn0cl 11917 . 2 (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ)
558, 12, 53, 54syl21anc 1232 1 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  wne 2340  wral 2448  wrex 2449   class class class wbr 3989  cmpt 4050  ran crn 4612  cfv 5198  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   + caddc 7777  cle 7955  cmin 8090   / cdiv 8589  cn 8878  2c2 8929  cz 9212  cuz 9487  ...cfz 9965   mod cmo 10278  cexp 10475  abscabs 10961  cdvds 11749   gcd cgcd 11897  ℤ[i]cgz 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898
This theorem is referenced by:  2sqlem8  13753
  Copyright terms: Public domain W3C validator