ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem8a GIF version

Theorem 2sqlem8a 15570
Description: Lemma for 2sqlem8 15571. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
2sqlem8a (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8a
StepHypRef Expression
1 2sqlem8.1 . . . 4 (𝜑𝐴 ∈ ℤ)
2 2sqlem8.m . . . . . 6 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 9724 . . . . . 6 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 122 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 112 . . . 4 (𝜑𝑀 ∈ ℕ)
6 2sqlem8.c . . . 4 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
71, 5, 64sqlem5 12676 . . 3 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
87simpld 112 . 2 (𝜑𝐶 ∈ ℤ)
9 2sqlem8.2 . . . 4 (𝜑𝐵 ∈ ℤ)
10 2sqlem8.d . . . 4 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 5, 104sqlem5 12676 . . 3 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1211simpld 112 . 2 (𝜑𝐷 ∈ ℤ)
134simprd 114 . . . 4 (𝜑𝑀 ≠ 1)
14 simpr 110 . . . . . . . . . 10 ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0)
151, 5, 6, 144sqlem9 12680 . . . . . . . . 9 ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2))
1615ex 115 . . . . . . . 8 (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2)))
17 eluzelz 9656 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
182, 17syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
19 dvdssq 12323 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2018, 1, 19syl2anc 411 . . . . . . . 8 (𝜑 → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2116, 20sylibrd 169 . . . . . . 7 (𝜑 → ((𝐶↑2) = 0 → 𝑀𝐴))
22 simpr 110 . . . . . . . . . 10 ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0)
239, 5, 10, 224sqlem9 12680 . . . . . . . . 9 ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2))
2423ex 115 . . . . . . . 8 (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2)))
25 dvdssq 12323 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2618, 9, 25syl2anc 411 . . . . . . . 8 (𝜑 → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2724, 26sylibrd 169 . . . . . . 7 (𝜑 → ((𝐷↑2) = 0 → 𝑀𝐵))
28 2sqlem8.3 . . . . . . . . . . 11 (𝜑 → (𝐴 gcd 𝐵) = 1)
29 1ne0 9103 . . . . . . . . . . . 12 1 ≠ 0
3029a1i 9 . . . . . . . . . . 11 (𝜑 → 1 ≠ 0)
3128, 30eqnetrd 2399 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
3231neneqd 2396 . . . . . . . . 9 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
33 gcdeq0 12269 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
341, 9, 33syl2anc 411 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3532, 34mtbid 673 . . . . . . . 8 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
36 dvdslegcd 12256 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3718, 1, 9, 35, 36syl31anc 1252 . . . . . . 7 (𝜑 → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3821, 27, 37syl2and 295 . . . . . 6 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3928breq2d 4055 . . . . . . 7 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1))
40 nnle1eq1 9059 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1))
415, 40syl 14 . . . . . . 7 (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1))
4239, 41bitrd 188 . . . . . 6 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1))
4338, 42sylibd 149 . . . . 5 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1))
4443necon3ad 2417 . . . 4 (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)))
4513, 44mpd 13 . . 3 (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))
468zcnd 9495 . . . . 5 (𝜑𝐶 ∈ ℂ)
47 sqeq0 10745 . . . . 5 (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4846, 47syl 14 . . . 4 (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4912zcnd 9495 . . . . 5 (𝜑𝐷 ∈ ℂ)
50 sqeq0 10745 . . . . 5 (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5149, 50syl 14 . . . 4 (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5248, 51anbi12d 473 . . 3 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0)))
5345, 52mtbid 673 . 2 (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0))
54 gcdn0cl 12254 . 2 (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ)
558, 12, 53, 54syl21anc 1248 1 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  {cab 2190  wne 2375  wral 2483  wrex 2484   class class class wbr 4043  cmpt 4104  ran crn 4675  cfv 5270  (class class class)co 5943  cc 7922  0cc0 7924  1c1 7925   + caddc 7927  cle 8107  cmin 8242   / cdiv 8744  cn 9035  2c2 9086  cz 9371  cuz 9647  ...cfz 10129   mod cmo 10465  cexp 10681  abscabs 11279  cdvds 12069   gcd cgcd 12245  ℤ[i]cgz 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-sup 7085  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-dvds 12070  df-gcd 12246
This theorem is referenced by:  2sqlem8  15571
  Copyright terms: Public domain W3C validator