ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem8a GIF version

Theorem 2sqlem8a 13558
Description: Lemma for 2sqlem8 13559. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
2sqlem8a (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8a
StepHypRef Expression
1 2sqlem8.1 . . . 4 (𝜑𝐴 ∈ ℤ)
2 2sqlem8.m . . . . . 6 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 9538 . . . . . 6 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 121 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 111 . . . 4 (𝜑𝑀 ∈ ℕ)
6 2sqlem8.c . . . 4 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
71, 5, 64sqlem5 12308 . . 3 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
87simpld 111 . 2 (𝜑𝐶 ∈ ℤ)
9 2sqlem8.2 . . . 4 (𝜑𝐵 ∈ ℤ)
10 2sqlem8.d . . . 4 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 5, 104sqlem5 12308 . . 3 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1211simpld 111 . 2 (𝜑𝐷 ∈ ℤ)
134simprd 113 . . . 4 (𝜑𝑀 ≠ 1)
14 simpr 109 . . . . . . . . . 10 ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0)
151, 5, 6, 144sqlem9 12312 . . . . . . . . 9 ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2))
1615ex 114 . . . . . . . 8 (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2)))
17 eluzelz 9471 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
182, 17syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
19 dvdssq 11960 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2018, 1, 19syl2anc 409 . . . . . . . 8 (𝜑 → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2116, 20sylibrd 168 . . . . . . 7 (𝜑 → ((𝐶↑2) = 0 → 𝑀𝐴))
22 simpr 109 . . . . . . . . . 10 ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0)
239, 5, 10, 224sqlem9 12312 . . . . . . . . 9 ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2))
2423ex 114 . . . . . . . 8 (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2)))
25 dvdssq 11960 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2618, 9, 25syl2anc 409 . . . . . . . 8 (𝜑 → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2724, 26sylibrd 168 . . . . . . 7 (𝜑 → ((𝐷↑2) = 0 → 𝑀𝐵))
28 2sqlem8.3 . . . . . . . . . . 11 (𝜑 → (𝐴 gcd 𝐵) = 1)
29 1ne0 8921 . . . . . . . . . . . 12 1 ≠ 0
3029a1i 9 . . . . . . . . . . 11 (𝜑 → 1 ≠ 0)
3128, 30eqnetrd 2359 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
3231neneqd 2356 . . . . . . . . 9 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
33 gcdeq0 11906 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
341, 9, 33syl2anc 409 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3532, 34mtbid 662 . . . . . . . 8 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
36 dvdslegcd 11893 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3718, 1, 9, 35, 36syl31anc 1231 . . . . . . 7 (𝜑 → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3821, 27, 37syl2and 293 . . . . . 6 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3928breq2d 3993 . . . . . . 7 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1))
40 nnle1eq1 8877 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1))
415, 40syl 14 . . . . . . 7 (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1))
4239, 41bitrd 187 . . . . . 6 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1))
4338, 42sylibd 148 . . . . 5 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1))
4443necon3ad 2377 . . . 4 (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)))
4513, 44mpd 13 . . 3 (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))
468zcnd 9310 . . . . 5 (𝜑𝐶 ∈ ℂ)
47 sqeq0 10514 . . . . 5 (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4846, 47syl 14 . . . 4 (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4912zcnd 9310 . . . . 5 (𝜑𝐷 ∈ ℂ)
50 sqeq0 10514 . . . . 5 (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5149, 50syl 14 . . . 4 (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5248, 51anbi12d 465 . . 3 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0)))
5345, 52mtbid 662 . 2 (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0))
54 gcdn0cl 11891 . 2 (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ)
558, 12, 53, 54syl21anc 1227 1 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  wne 2335  wral 2443  wrex 2444   class class class wbr 3981  cmpt 4042  ran crn 4604  cfv 5187  (class class class)co 5841  cc 7747  0cc0 7749  1c1 7750   + caddc 7752  cle 7930  cmin 8065   / cdiv 8564  cn 8853  2c2 8904  cz 9187  cuz 9462  ...cfz 9940   mod cmo 10253  cexp 10450  abscabs 10935  cdvds 11723   gcd cgcd 11871  ℤ[i]cgz 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-sup 6945  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872
This theorem is referenced by:  2sqlem8  13559
  Copyright terms: Public domain W3C validator