| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2sqlem8a | GIF version | ||
| Description: Lemma for 2sqlem8 15571. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| Ref | Expression |
|---|---|
| 2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
| 2sqlem7.2 | ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
| 2sqlem9.5 | ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
| 2sqlem9.7 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
| 2sqlem8.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2sqlem8.m | ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) |
| 2sqlem8.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 2sqlem8.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 2sqlem8.3 | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
| 2sqlem8.4 | ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) |
| 2sqlem8.c | ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| 2sqlem8.d | ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| Ref | Expression |
|---|---|
| 2sqlem8a | ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sqlem8.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 2sqlem8.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) | |
| 3 | eluz2b3 9724 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) | |
| 4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) |
| 5 | 4 | simpld 112 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 6 | 2sqlem8.c | . . . 4 ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 7 | 1, 5, 6 | 4sqlem5 12676 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴 − 𝐶) / 𝑀) ∈ ℤ)) |
| 8 | 7 | simpld 112 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 9 | 2sqlem8.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
| 10 | 2sqlem8.d | . . . 4 ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 11 | 9, 5, 10 | 4sqlem5 12676 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵 − 𝐷) / 𝑀) ∈ ℤ)) |
| 12 | 11 | simpld 112 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℤ) |
| 13 | 4 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 1) |
| 14 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0) | |
| 15 | 1, 5, 6, 14 | 4sqlem9 12680 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2)) |
| 16 | 15 | ex 115 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2))) |
| 17 | eluzelz 9656 | . . . . . . . . . 10 ⊢ (𝑀 ∈ (ℤ≥‘2) → 𝑀 ∈ ℤ) | |
| 18 | 2, 17 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 19 | dvdssq 12323 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) | |
| 20 | 18, 1, 19 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) |
| 21 | 16, 20 | sylibrd 169 | . . . . . . 7 ⊢ (𝜑 → ((𝐶↑2) = 0 → 𝑀 ∥ 𝐴)) |
| 22 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0) | |
| 23 | 9, 5, 10, 22 | 4sqlem9 12680 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2)) |
| 24 | 23 | ex 115 | . . . . . . . 8 ⊢ (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2))) |
| 25 | dvdssq 12323 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) | |
| 26 | 18, 9, 25 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∥ 𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2))) |
| 27 | 24, 26 | sylibrd 169 | . . . . . . 7 ⊢ (𝜑 → ((𝐷↑2) = 0 → 𝑀 ∥ 𝐵)) |
| 28 | 2sqlem8.3 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
| 29 | 1ne0 9103 | . . . . . . . . . . . 12 ⊢ 1 ≠ 0 | |
| 30 | 29 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝜑 → 1 ≠ 0) |
| 31 | 28, 30 | eqnetrd 2399 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 gcd 𝐵) ≠ 0) |
| 32 | 31 | neneqd 2396 | . . . . . . . . 9 ⊢ (𝜑 → ¬ (𝐴 gcd 𝐵) = 0) |
| 33 | gcdeq0 12269 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | |
| 34 | 1, 9, 33 | syl2anc 411 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 35 | 32, 34 | mtbid 673 | . . . . . . . 8 ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| 36 | dvdslegcd 12256 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) | |
| 37 | 18, 1, 9, 35, 36 | syl31anc 1252 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 ∥ 𝐴 ∧ 𝑀 ∥ 𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
| 38 | 21, 27, 37 | syl2and 295 | . . . . . 6 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵))) |
| 39 | 28 | breq2d 4055 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1)) |
| 40 | nnle1eq1 9059 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1)) | |
| 41 | 5, 40 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1)) |
| 42 | 39, 41 | bitrd 188 | . . . . . 6 ⊢ (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1)) |
| 43 | 38, 42 | sylibd 149 | . . . . 5 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1)) |
| 44 | 43 | necon3ad 2417 | . . . 4 ⊢ (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))) |
| 45 | 13, 44 | mpd 13 | . . 3 ⊢ (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)) |
| 46 | 8 | zcnd 9495 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 47 | sqeq0 10745 | . . . . 5 ⊢ (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) | |
| 48 | 46, 47 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) |
| 49 | 12 | zcnd 9495 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 50 | sqeq0 10745 | . . . . 5 ⊢ (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) | |
| 51 | 49, 50 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0)) |
| 52 | 48, 51 | anbi12d 473 | . . 3 ⊢ (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0))) |
| 53 | 45, 52 | mtbid 673 | . 2 ⊢ (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0)) |
| 54 | gcdn0cl 12254 | . 2 ⊢ (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ) | |
| 55 | 8, 12, 53, 54 | syl21anc 1248 | 1 ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {cab 2190 ≠ wne 2375 ∀wral 2483 ∃wrex 2484 class class class wbr 4043 ↦ cmpt 4104 ran crn 4675 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 0cc0 7924 1c1 7925 + caddc 7927 ≤ cle 8107 − cmin 8242 / cdiv 8744 ℕcn 9035 2c2 9086 ℤcz 9371 ℤ≥cuz 9647 ...cfz 10129 mod cmo 10465 ↑cexp 10681 abscabs 11279 ∥ cdvds 12069 gcd cgcd 12245 ℤ[i]cgz 12663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-sup 7085 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-fl 10411 df-mod 10466 df-seqfrec 10591 df-exp 10682 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-dvds 12070 df-gcd 12246 |
| This theorem is referenced by: 2sqlem8 15571 |
| Copyright terms: Public domain | W3C validator |