![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xle2add | GIF version |
Description: Extended real version of le2add 8401. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xle2add | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐴 ∈ ℝ*) | |
2 | simprl 529 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐶 ∈ ℝ*) | |
3 | simplr 528 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐵 ∈ ℝ*) | |
4 | xleadd1a 9873 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐶) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)) | |
5 | 4 | ex 115 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵))) |
6 | 1, 2, 3, 5 | syl3anc 1238 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐴 ≤ 𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵))) |
7 | simprr 531 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐷 ∈ ℝ*) | |
8 | xleadd2a 9874 | . . . 4 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐵 ≤ 𝐷) → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) | |
9 | 8 | ex 115 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
10 | 3, 7, 2, 9 | syl3anc 1238 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐵 ≤ 𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
11 | xaddcl 9860 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
12 | 11 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
13 | xaddcl 9860 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) ∈ ℝ*) | |
14 | 2, 3, 13 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐵) ∈ ℝ*) |
15 | xaddcl 9860 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*) | |
16 | 15 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐷) ∈ ℝ*) |
17 | xrletr 9808 | . . 3 ⊢ (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ∈ ℝ*) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) | |
18 | 12, 14, 16, 17 | syl3anc 1238 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
19 | 6, 10, 18 | syl2and 295 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 class class class wbr 4004 (class class class)co 5875 ℝ*cxr 7991 ≤ cle 7993 +𝑒 cxad 9770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-i2m1 7916 ax-0id 7919 ax-rnegex 7920 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-po 4297 df-iso 4298 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-xadd 9773 |
This theorem is referenced by: xrbdtri 11284 xmetxp 14010 |
Copyright terms: Public domain | W3C validator |