![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xle2add | GIF version |
Description: Extended real version of le2add 8463. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xle2add | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐴 ∈ ℝ*) | |
2 | simprl 529 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐶 ∈ ℝ*) | |
3 | simplr 528 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐵 ∈ ℝ*) | |
4 | xleadd1a 9939 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐶) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)) | |
5 | 4 | ex 115 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵))) |
6 | 1, 2, 3, 5 | syl3anc 1249 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐴 ≤ 𝐶 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵))) |
7 | simprr 531 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → 𝐷 ∈ ℝ*) | |
8 | xleadd2a 9940 | . . . 4 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐵 ≤ 𝐷) → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) | |
9 | 8 | ex 115 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
10 | 3, 7, 2, 9 | syl3anc 1249 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐵 ≤ 𝐷 → (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
11 | xaddcl 9926 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
12 | 11 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
13 | xaddcl 9926 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) ∈ ℝ*) | |
14 | 2, 3, 13 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐵) ∈ ℝ*) |
15 | xaddcl 9926 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*) | |
16 | 15 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (𝐶 +𝑒 𝐷) ∈ ℝ*) |
17 | xrletr 9874 | . . 3 ⊢ (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐵) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ∈ ℝ*) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) | |
18 | 12, 14, 16, 17 | syl3anc 1249 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → (((𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ∧ (𝐶 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
19 | 6, 10, 18 | syl2and 295 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝ*cxr 8053 ≤ cle 8055 +𝑒 cxad 9836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-xadd 9839 |
This theorem is referenced by: xrbdtri 11419 xmetxp 14675 |
Copyright terms: Public domain | W3C validator |