| Step | Hyp | Ref
| Expression |
| 1 | | 1pru 7640 |
. . . 4
⊢
(2nd ‘1P) = {𝑤 ∣
1Q <Q 𝑤} |
| 2 | 1 | abeq2i 2307 |
. . 3
⊢ (𝑤 ∈ (2nd
‘1P) ↔ 1Q
<Q 𝑤) |
| 3 | | prop 7559 |
. . . . . 6
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
| 4 | | prmuloc2 7651 |
. . . . . 6
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧
1Q <Q 𝑤) → ∃𝑣 ∈ (1st ‘𝐴)(𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) |
| 5 | 3, 4 | sylan 283 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
1Q <Q 𝑤) → ∃𝑣 ∈ (1st ‘𝐴)(𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) |
| 6 | | prnminu 7573 |
. . . . . . . 8
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ (𝑣
·Q 𝑤) ∈ (2nd ‘𝐴)) → ∃𝑧 ∈ (2nd
‘𝐴)𝑧 <Q (𝑣
·Q 𝑤)) |
| 7 | 3, 6 | sylan 283 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
(𝑣
·Q 𝑤) ∈ (2nd ‘𝐴)) → ∃𝑧 ∈ (2nd
‘𝐴)𝑧 <Q (𝑣
·Q 𝑤)) |
| 8 | 7 | ad2ant2rl 511 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴))) →
∃𝑧 ∈
(2nd ‘𝐴)𝑧 <Q (𝑣
·Q 𝑤)) |
| 9 | | simp3 1001 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → 𝑧 <Q (𝑣
·Q 𝑤)) |
| 10 | | simp2l 1025 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → 𝑣 ∈ (1st ‘𝐴)) |
| 11 | | elprnql 7565 |
. . . . . . . . . . . . . . . . . 18
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑣 ∈ (1st
‘𝐴)) → 𝑣 ∈
Q) |
| 12 | 3, 11 | sylan 283 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ P ∧
𝑣 ∈ (1st
‘𝐴)) → 𝑣 ∈
Q) |
| 13 | 12 | ad2ant2r 509 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴))) → 𝑣 ∈
Q) |
| 14 | 13 | 3adant3 1019 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → 𝑣 ∈ Q) |
| 15 | | simp1r 1024 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → 1Q
<Q 𝑤) |
| 16 | | ltrelnq 7449 |
. . . . . . . . . . . . . . . . . 18
⊢
<Q ⊆ (Q ×
Q) |
| 17 | 16 | brel 4716 |
. . . . . . . . . . . . . . . . 17
⊢
(1Q <Q 𝑤 →
(1Q ∈ Q ∧ 𝑤 ∈ Q)) |
| 18 | 17 | simprd 114 |
. . . . . . . . . . . . . . . 16
⊢
(1Q <Q 𝑤 → 𝑤 ∈ Q) |
| 19 | 15, 18 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → 𝑤 ∈ Q) |
| 20 | | recclnq 7476 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ Q →
(*Q‘𝑤) ∈ Q) |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
(*Q‘𝑤) ∈ Q) |
| 22 | | mulassnqg 7468 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q
∧ (*Q‘𝑤) ∈ Q) → ((𝑣
·Q 𝑤) ·Q
(*Q‘𝑤)) = (𝑣 ·Q (𝑤
·Q (*Q‘𝑤)))) |
| 23 | 14, 19, 21, 22 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → ((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤)) = (𝑣 ·Q (𝑤
·Q (*Q‘𝑤)))) |
| 24 | | recidnq 7477 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ Q →
(𝑤
·Q (*Q‘𝑤)) =
1Q) |
| 25 | 19, 24 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → (𝑤 ·Q
(*Q‘𝑤)) =
1Q) |
| 26 | 25 | oveq2d 5941 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → (𝑣 ·Q (𝑤
·Q (*Q‘𝑤))) = (𝑣 ·Q
1Q)) |
| 27 | | mulidnq 7473 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ Q →
(𝑣
·Q 1Q) = 𝑣) |
| 28 | 14, 27 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → (𝑣 ·Q
1Q) = 𝑣) |
| 29 | 23, 26, 28 | 3eqtrd 2233 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → ((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤)) = 𝑣) |
| 30 | 29 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → (((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤)) ∈ (1st
‘𝐴) ↔ 𝑣 ∈ (1st
‘𝐴))) |
| 31 | 10, 30 | mpbird 167 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → ((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤)) ∈ (1st
‘𝐴)) |
| 32 | | ltrnqi 7505 |
. . . . . . . . . . . . 13
⊢ (𝑧 <Q
(𝑣
·Q 𝑤) →
(*Q‘(𝑣 ·Q 𝑤))
<Q (*Q‘𝑧)) |
| 33 | | ltmnqg 7485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ ·Q 𝑓) <Q
(ℎ
·Q 𝑔))) |
| 34 | 33 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ ·Q 𝑓) <Q
(ℎ
·Q 𝑔))) |
| 35 | | mulclnq 7460 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ Q ∧
𝑤 ∈ Q)
→ (𝑣
·Q 𝑤) ∈ Q) |
| 36 | 14, 19, 35 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → (𝑣 ·Q 𝑤) ∈
Q) |
| 37 | | recclnq 7476 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣
·Q 𝑤) ∈ Q →
(*Q‘(𝑣 ·Q 𝑤)) ∈
Q) |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
(*Q‘(𝑣 ·Q 𝑤)) ∈
Q) |
| 39 | 16 | brel 4716 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 <Q
(𝑣
·Q 𝑤) → (𝑧 ∈ Q ∧ (𝑣
·Q 𝑤) ∈ Q)) |
| 40 | 39 | simpld 112 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 <Q
(𝑣
·Q 𝑤) → 𝑧 ∈ Q) |
| 41 | 9, 40 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → 𝑧 ∈ Q) |
| 42 | | recclnq 7476 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ Q →
(*Q‘𝑧) ∈ Q) |
| 43 | 41, 42 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
(*Q‘𝑧) ∈ Q) |
| 44 | | mulcomnqg 7467 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
·Q 𝑔) = (𝑔 ·Q 𝑓)) |
| 45 | 44 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
·Q 𝑔) = (𝑔 ·Q 𝑓)) |
| 46 | 34, 38, 43, 19, 45 | caovord2d 6097 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
((*Q‘(𝑣 ·Q 𝑤))
<Q (*Q‘𝑧) ↔
((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) <Q
((*Q‘𝑧) ·Q 𝑤))) |
| 47 | 32, 46 | imbitrid 154 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → (𝑧 <Q (𝑣
·Q 𝑤) →
((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) <Q
((*Q‘𝑧) ·Q 𝑤))) |
| 48 | | mulcomnqg 7467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑣
·Q 𝑤) ∈ Q ∧
(*Q‘(𝑣 ·Q 𝑤)) ∈ Q)
→ ((𝑣
·Q 𝑤) ·Q
(*Q‘(𝑣 ·Q 𝑤))) =
((*Q‘(𝑣 ·Q 𝑤))
·Q (𝑣 ·Q 𝑤))) |
| 49 | 37, 48 | mpdan 421 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣
·Q 𝑤) ∈ Q → ((𝑣
·Q 𝑤) ·Q
(*Q‘(𝑣 ·Q 𝑤))) =
((*Q‘(𝑣 ·Q 𝑤))
·Q (𝑣 ·Q 𝑤))) |
| 50 | | recidnq 7477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣
·Q 𝑤) ∈ Q → ((𝑣
·Q 𝑤) ·Q
(*Q‘(𝑣 ·Q 𝑤))) =
1Q) |
| 51 | 49, 50 | eqtr3d 2231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣
·Q 𝑤) ∈ Q →
((*Q‘(𝑣 ·Q 𝑤))
·Q (𝑣 ·Q 𝑤)) =
1Q) |
| 52 | 51, 24 | oveqan12d 5944 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑣
·Q 𝑤) ∈ Q ∧ 𝑤 ∈ Q) →
(((*Q‘(𝑣 ·Q 𝑤))
·Q (𝑣 ·Q 𝑤))
·Q (𝑤 ·Q
(*Q‘𝑤))) = (1Q
·Q
1Q)) |
| 53 | 36, 19, 52 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
(((*Q‘(𝑣 ·Q 𝑤))
·Q (𝑣 ·Q 𝑤))
·Q (𝑤 ·Q
(*Q‘𝑤))) = (1Q
·Q
1Q)) |
| 54 | | mulassnqg 7468 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → ((𝑓
·Q 𝑔) ·Q ℎ) = (𝑓 ·Q (𝑔
·Q ℎ))) |
| 55 | 54 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ ((𝑓
·Q 𝑔) ·Q ℎ) = (𝑓 ·Q (𝑔
·Q ℎ))) |
| 56 | | mulclnq 7460 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
·Q 𝑔) ∈ Q) |
| 57 | 56 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
·Q 𝑔) ∈ Q) |
| 58 | 38, 36, 19, 45, 55, 21, 57 | caov4d 6112 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
(((*Q‘(𝑣 ·Q 𝑤))
·Q (𝑣 ·Q 𝑤))
·Q (𝑤 ·Q
(*Q‘𝑤))) =
(((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) ·Q ((𝑣
·Q 𝑤) ·Q
(*Q‘𝑤)))) |
| 59 | 53, 58 | eqtr3d 2231 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → (1Q
·Q 1Q) =
(((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) ·Q ((𝑣
·Q 𝑤) ·Q
(*Q‘𝑤)))) |
| 60 | | 1nq 7450 |
. . . . . . . . . . . . . . . . 17
⊢
1Q ∈ Q |
| 61 | | mulidnq 7473 |
. . . . . . . . . . . . . . . . 17
⊢
(1Q ∈ Q →
(1Q ·Q
1Q) = 1Q) |
| 62 | 60, 61 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(1Q ·Q
1Q) = 1Q |
| 63 | 59, 62 | eqtr3di 2244 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
(((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) ·Q ((𝑣
·Q 𝑤) ·Q
(*Q‘𝑤))) =
1Q) |
| 64 | 57, 38, 19 | caovcld 6081 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) ∈ Q) |
| 65 | 57, 36, 21 | caovcld 6081 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → ((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤)) ∈
Q) |
| 66 | | recmulnqg 7475 |
. . . . . . . . . . . . . . . 16
⊢
((((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) ∈ Q ∧ ((𝑣
·Q 𝑤) ·Q
(*Q‘𝑤)) ∈ Q) →
((*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤)) ↔
(((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) ·Q ((𝑣
·Q 𝑤) ·Q
(*Q‘𝑤))) =
1Q)) |
| 67 | 64, 65, 66 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
((*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤)) ↔
(((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) ·Q ((𝑣
·Q 𝑤) ·Q
(*Q‘𝑤))) =
1Q)) |
| 68 | 63, 67 | mpbird 167 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
(*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤))) |
| 69 | 68 | eleq1d 2265 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
((*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) ∈ (1st
‘𝐴) ↔ ((𝑣
·Q 𝑤) ·Q
(*Q‘𝑤)) ∈ (1st ‘𝐴))) |
| 70 | 69 | biimprd 158 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → (((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤)) ∈ (1st
‘𝐴) →
(*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) ∈ (1st
‘𝐴))) |
| 71 | | breq1 4037 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 =
((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) → (𝑦 <Q
((*Q‘𝑧) ·Q 𝑤) ↔
((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) <Q
((*Q‘𝑧) ·Q 𝑤))) |
| 72 | | fveq2 5561 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 =
((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) →
(*Q‘𝑦) =
(*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤))) |
| 73 | 72 | eleq1d 2265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 =
((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) →
((*Q‘𝑦) ∈ (1st ‘𝐴) ↔
(*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) ∈ (1st
‘𝐴))) |
| 74 | 71, 73 | anbi12d 473 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 =
((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) → ((𝑦 <Q
((*Q‘𝑧) ·Q 𝑤) ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) ↔
(((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) <Q
((*Q‘𝑧) ·Q 𝑤) ∧
(*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) ∈ (1st
‘𝐴)))) |
| 75 | 74 | spcegv 2852 |
. . . . . . . . . . . . . 14
⊢
(((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) ∈ Q →
((((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) <Q
((*Q‘𝑧) ·Q 𝑤) ∧
(*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) ∈ (1st
‘𝐴)) →
∃𝑦(𝑦 <Q
((*Q‘𝑧) ·Q 𝑤) ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) |
| 76 | 64, 75 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
((((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) <Q
((*Q‘𝑧) ·Q 𝑤) ∧
(*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) ∈ (1st
‘𝐴)) →
∃𝑦(𝑦 <Q
((*Q‘𝑧) ·Q 𝑤) ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) |
| 77 | | recexpr.1 |
. . . . . . . . . . . . . 14
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
| 78 | 77 | recexprlemelu 7707 |
. . . . . . . . . . . . 13
⊢
(((*Q‘𝑧) ·Q 𝑤) ∈ (2nd
‘𝐵) ↔
∃𝑦(𝑦 <Q
((*Q‘𝑧) ·Q 𝑤) ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))) |
| 79 | 76, 78 | imbitrrdi 162 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
((((*Q‘(𝑣 ·Q 𝑤))
·Q 𝑤) <Q
((*Q‘𝑧) ·Q 𝑤) ∧
(*Q‘((*Q‘(𝑣
·Q 𝑤)) ·Q 𝑤)) ∈ (1st
‘𝐴)) →
((*Q‘𝑧) ·Q 𝑤) ∈ (2nd
‘𝐵))) |
| 80 | 47, 70, 79 | syl2and 295 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → ((𝑧 <Q (𝑣
·Q 𝑤) ∧ ((𝑣 ·Q 𝑤)
·Q (*Q‘𝑤)) ∈ (1st
‘𝐴)) →
((*Q‘𝑧) ·Q 𝑤) ∈ (2nd
‘𝐵))) |
| 81 | 9, 31, 80 | mp2and 433 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) →
((*Q‘𝑧) ·Q 𝑤) ∈ (2nd
‘𝐵)) |
| 82 | | mulidnq 7473 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ Q →
(𝑤
·Q 1Q) = 𝑤) |
| 83 | | mulcomnqg 7467 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ Q ∧
1Q ∈ Q) → (𝑤 ·Q
1Q) = (1Q
·Q 𝑤)) |
| 84 | 60, 83 | mpan2 425 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ Q →
(𝑤
·Q 1Q) =
(1Q ·Q 𝑤)) |
| 85 | 82, 84 | eqtr3d 2231 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ Q →
𝑤 =
(1Q ·Q 𝑤)) |
| 86 | 85 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ 𝑤 =
(1Q ·Q 𝑤)) |
| 87 | | recidnq 7477 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ Q →
(𝑧
·Q (*Q‘𝑧)) =
1Q) |
| 88 | 87 | oveq1d 5940 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ Q →
((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (1Q
·Q 𝑤)) |
| 89 | 88 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ ((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (1Q
·Q 𝑤)) |
| 90 | | mulassnqg 7468 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ Q ∧
(*Q‘𝑧) ∈ Q ∧ 𝑤 ∈ Q) →
((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 91 | 42, 90 | syl3an2 1283 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ Q ∧
𝑧 ∈ Q
∧ 𝑤 ∈
Q) → ((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 92 | 91 | 3anidm12 1306 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ ((𝑧
·Q (*Q‘𝑧))
·Q 𝑤) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 93 | 86, 89, 92 | 3eqtr2d 2235 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ 𝑤 = (𝑧
·Q ((*Q‘𝑧)
·Q 𝑤))) |
| 94 | 41, 19, 93 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → 𝑤 = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 95 | | oveq2 5933 |
. . . . . . . . . . . 12
⊢ (𝑥 =
((*Q‘𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) |
| 96 | 95 | eqeq2d 2208 |
. . . . . . . . . . 11
⊢ (𝑥 =
((*Q‘𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤)))) |
| 97 | 96 | rspcev 2868 |
. . . . . . . . . 10
⊢
((((*Q‘𝑧) ·Q 𝑤) ∈ (2nd
‘𝐵) ∧ 𝑤 = (𝑧 ·Q
((*Q‘𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (2nd
‘𝐵)𝑤 = (𝑧 ·Q 𝑥)) |
| 98 | 81, 94, 97 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴)) ∧ 𝑧 <Q
(𝑣
·Q 𝑤)) → ∃𝑥 ∈ (2nd ‘𝐵)𝑤 = (𝑧 ·Q 𝑥)) |
| 99 | 98 | 3expia 1207 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴))) → (𝑧 <Q
(𝑣
·Q 𝑤) → ∃𝑥 ∈ (2nd ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 100 | 99 | reximdv 2598 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴))) →
(∃𝑧 ∈
(2nd ‘𝐴)𝑧 <Q (𝑣
·Q 𝑤) → ∃𝑧 ∈ (2nd ‘𝐴)∃𝑥 ∈ (2nd ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 101 | 77 | recexprlempr 7716 |
. . . . . . . . 9
⊢ (𝐴 ∈ P →
𝐵 ∈
P) |
| 102 | | df-imp 7553 |
. . . . . . . . . 10
⊢
·P = (𝑦 ∈ P, 𝑤 ∈ P ↦ 〈{𝑢 ∈ Q ∣
∃𝑓 ∈
Q ∃𝑔
∈ Q (𝑓
∈ (1st ‘𝑦) ∧ 𝑔 ∈ (1st ‘𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢 ∈ Q ∣ ∃𝑓 ∈ Q
∃𝑔 ∈
Q (𝑓 ∈
(2nd ‘𝑦)
∧ 𝑔 ∈
(2nd ‘𝑤)
∧ 𝑢 = (𝑓
·Q 𝑔))}〉) |
| 103 | 102, 56 | genpelvu 7597 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑤 ∈
(2nd ‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (2nd ‘𝐴)∃𝑥 ∈ (2nd ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 104 | 101, 103 | mpdan 421 |
. . . . . . . 8
⊢ (𝐴 ∈ P →
(𝑤 ∈ (2nd
‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (2nd ‘𝐴)∃𝑥 ∈ (2nd ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 105 | 104 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴))) → (𝑤 ∈ (2nd
‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (2nd ‘𝐴)∃𝑥 ∈ (2nd ‘𝐵)𝑤 = (𝑧 ·Q 𝑥))) |
| 106 | 100, 105 | sylibrd 169 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴))) →
(∃𝑧 ∈
(2nd ‘𝐴)𝑧 <Q (𝑣
·Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴
·P 𝐵)))) |
| 107 | 8, 106 | mpd 13 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑤) ∧ (𝑣 ∈ (1st ‘𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd
‘𝐴))) → 𝑤 ∈ (2nd
‘(𝐴
·P 𝐵))) |
| 108 | 5, 107 | rexlimddv 2619 |
. . . 4
⊢ ((𝐴 ∈ P ∧
1Q <Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴
·P 𝐵))) |
| 109 | 108 | ex 115 |
. . 3
⊢ (𝐴 ∈ P →
(1Q <Q 𝑤 → 𝑤 ∈ (2nd ‘(𝐴
·P 𝐵)))) |
| 110 | 2, 109 | biimtrid 152 |
. 2
⊢ (𝐴 ∈ P →
(𝑤 ∈ (2nd
‘1P) → 𝑤 ∈ (2nd ‘(𝐴
·P 𝐵)))) |
| 111 | 110 | ssrdv 3190 |
1
⊢ (𝐴 ∈ P →
(2nd ‘1P) ⊆ (2nd
‘(𝐴
·P 𝐵))) |