ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssu GIF version

Theorem recexprlem1ssu 7747
Description: The upper cut of one is a subset of the upper cut of 𝐴 ·P 𝐵. Lemma for recexpr 7751. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlem1ssu (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlem1ssu
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pru 7669 . . . 4 (2nd ‘1P) = {𝑤 ∣ 1Q <Q 𝑤}
21abeq2i 2316 . . 3 (𝑤 ∈ (2nd ‘1P) ↔ 1Q <Q 𝑤)
3 prop 7588 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
4 prmuloc2 7680 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ 1Q <Q 𝑤) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q 𝑤) ∈ (2nd𝐴))
53, 4sylan 283 . . . . 5 ((𝐴P ∧ 1Q <Q 𝑤) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q 𝑤) ∈ (2nd𝐴))
6 prnminu 7602 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
73, 6sylan 283 . . . . . . 7 ((𝐴P ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
87ad2ant2rl 511 . . . . . 6 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
9 simp3 1002 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑧 <Q (𝑣 ·Q 𝑤))
10 simp2l 1026 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑣 ∈ (1st𝐴))
11 elprnql 7594 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → 𝑣Q)
123, 11sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑣 ∈ (1st𝐴)) → 𝑣Q)
1312ad2ant2r 509 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → 𝑣Q)
14133adant3 1020 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑣Q)
15 simp1r 1025 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 1Q <Q 𝑤)
16 ltrelnq 7478 . . . . . . . . . . . . . . . . . 18 <Q ⊆ (Q × Q)
1716brel 4727 . . . . . . . . . . . . . . . . 17 (1Q <Q 𝑤 → (1QQ𝑤Q))
1817simprd 114 . . . . . . . . . . . . . . . 16 (1Q <Q 𝑤𝑤Q)
1915, 18syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑤Q)
20 recclnq 7505 . . . . . . . . . . . . . . . 16 (𝑤Q → (*Q𝑤) ∈ Q)
2119, 20syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q𝑤) ∈ Q)
22 mulassnqg 7497 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q ∧ (*Q𝑤) ∈ Q) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = (𝑣 ·Q (𝑤 ·Q (*Q𝑤))))
2314, 19, 21, 22syl3anc 1250 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = (𝑣 ·Q (𝑤 ·Q (*Q𝑤))))
24 recidnq 7506 . . . . . . . . . . . . . . . 16 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
2519, 24syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑤 ·Q (*Q𝑤)) = 1Q)
2625oveq2d 5960 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q (𝑤 ·Q (*Q𝑤))) = (𝑣 ·Q 1Q))
27 mulidnq 7502 . . . . . . . . . . . . . . 15 (𝑣Q → (𝑣 ·Q 1Q) = 𝑣)
2814, 27syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q 1Q) = 𝑣)
2923, 26, 283eqtrd 2242 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = 𝑣)
3029eleq1d 2274 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴) ↔ 𝑣 ∈ (1st𝐴)))
3110, 30mpbird 167 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴))
32 ltrnqi 7534 . . . . . . . . . . . . 13 (𝑧 <Q (𝑣 ·Q 𝑤) → (*Q‘(𝑣 ·Q 𝑤)) <Q (*Q𝑧))
33 ltmnqg 7514 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
3433adantl 277 . . . . . . . . . . . . . 14 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
35 mulclnq 7489 . . . . . . . . . . . . . . . 16 ((𝑣Q𝑤Q) → (𝑣 ·Q 𝑤) ∈ Q)
3614, 19, 35syl2anc 411 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q 𝑤) ∈ Q)
37 recclnq 7505 . . . . . . . . . . . . . . 15 ((𝑣 ·Q 𝑤) ∈ Q → (*Q‘(𝑣 ·Q 𝑤)) ∈ Q)
3836, 37syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q‘(𝑣 ·Q 𝑤)) ∈ Q)
3916brel 4727 . . . . . . . . . . . . . . . . 17 (𝑧 <Q (𝑣 ·Q 𝑤) → (𝑧Q ∧ (𝑣 ·Q 𝑤) ∈ Q))
4039simpld 112 . . . . . . . . . . . . . . . 16 (𝑧 <Q (𝑣 ·Q 𝑤) → 𝑧Q)
419, 40syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑧Q)
42 recclnq 7505 . . . . . . . . . . . . . . 15 (𝑧Q → (*Q𝑧) ∈ Q)
4341, 42syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q𝑧) ∈ Q)
44 mulcomnqg 7496 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
4544adantl 277 . . . . . . . . . . . . . 14 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
4634, 38, 43, 19, 45caovord2d 6116 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘(𝑣 ·Q 𝑤)) <Q (*Q𝑧) ↔ ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
4732, 46imbitrid 154 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑧 <Q (𝑣 ·Q 𝑤) → ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
48 mulcomnqg 7496 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ·Q 𝑤) ∈ Q ∧ (*Q‘(𝑣 ·Q 𝑤)) ∈ Q) → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)))
4937, 48mpdan 421 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ·Q 𝑤) ∈ Q → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)))
50 recidnq 7506 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ·Q 𝑤) ∈ Q → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = 1Q)
5149, 50eqtr3d 2240 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ·Q 𝑤) ∈ Q → ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) = 1Q)
5251, 24oveqan12d 5963 . . . . . . . . . . . . . . . . . 18 (((𝑣 ·Q 𝑤) ∈ Q𝑤Q) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
5336, 19, 52syl2anc 411 . . . . . . . . . . . . . . . . 17 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
54 mulassnqg 7497 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔QQ) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
5554adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
56 mulclnq 7489 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
5756adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) ∈ Q)
5838, 36, 19, 45, 55, 21, 57caov4d 6131 . . . . . . . . . . . . . . . . 17 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))))
5953, 58eqtr3d 2240 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (1Q ·Q 1Q) = (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))))
60 1nq 7479 . . . . . . . . . . . . . . . . 17 1QQ
61 mulidnq 7502 . . . . . . . . . . . . . . . . 17 (1QQ → (1Q ·Q 1Q) = 1Q)
6260, 61ax-mp 5 . . . . . . . . . . . . . . . 16 (1Q ·Q 1Q) = 1Q
6359, 62eqtr3di 2253 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q)
6457, 38, 19caovcld 6100 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q)
6557, 36, 21caovcld 6100 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ Q)
66 recmulnqg 7504 . . . . . . . . . . . . . . . 16 ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q ∧ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ Q) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q))
6764, 65, 66syl2anc 411 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q))
6863, 67mpbird 167 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)))
6968eleq1d 2274 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴) ↔ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴)))
7069biimprd 158 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴) → (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)))
71 breq1 4047 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → (𝑦 <Q ((*Q𝑧) ·Q 𝑤) ↔ ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
72 fveq2 5576 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)))
7372eleq1d 2274 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)))
7471, 73anbi12d 473 . . . . . . . . . . . . . . 15 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → ((𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴))))
7574spcegv 2861 . . . . . . . . . . . . . 14 (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴))))
7664, 75syl 14 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴))))
77 recexpr.1 . . . . . . . . . . . . . 14 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
7877recexprlemelu 7736 . . . . . . . . . . . . 13 (((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴)))
7976, 78imbitrrdi 162 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵)))
8047, 70, 79syl2and 295 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑧 <Q (𝑣 ·Q 𝑤) ∧ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵)))
819, 31, 80mp2and 433 . . . . . . . . . 10 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵))
82 mulidnq 7502 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
83 mulcomnqg 7496 . . . . . . . . . . . . . . 15 ((𝑤Q ∧ 1QQ) → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8460, 83mpan2 425 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8582, 84eqtr3d 2240 . . . . . . . . . . . . 13 (𝑤Q𝑤 = (1Q ·Q 𝑤))
8685adantl 277 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → 𝑤 = (1Q ·Q 𝑤))
87 recidnq 7506 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
8887oveq1d 5959 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
8988adantr 276 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
90 mulassnqg 7497 . . . . . . . . . . . . . 14 ((𝑧Q ∧ (*Q𝑧) ∈ Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9142, 90syl3an2 1284 . . . . . . . . . . . . 13 ((𝑧Q𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
92913anidm12 1308 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9386, 89, 923eqtr2d 2244 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9441, 19, 93syl2anc 411 . . . . . . . . . 10 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
95 oveq2 5952 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9695eqeq2d 2217 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9796rspcev 2877 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵) ∧ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥))
9881, 94, 97syl2anc 411 . . . . . . . . 9 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥))
99983expia 1208 . . . . . . . 8 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (𝑧 <Q (𝑣 ·Q 𝑤) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10099reximdv 2607 . . . . . . 7 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤) → ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10177recexprlempr 7745 . . . . . . . . 9 (𝐴P𝐵P)
102 df-imp 7582 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
103102, 56genpelvu 7626 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
104101, 103mpdan 421 . . . . . . . 8 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
105104ad2antrr 488 . . . . . . 7 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
106100, 105sylibrd 169 . . . . . 6 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
1078, 106mpd 13 . . . . 5 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)))
1085, 107rexlimddv 2628 . . . 4 ((𝐴P ∧ 1Q <Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)))
109108ex 115 . . 3 (𝐴P → (1Q <Q 𝑤𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
1102, 109biimtrid 152 . 2 (𝐴P → (𝑤 ∈ (2nd ‘1P) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
111110ssrdv 3199 1 (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wrex 2485  wss 3166  cop 3636   class class class wbr 4044  cfv 5271  (class class class)co 5944  1st c1st 6224  2nd c2nd 6225  Qcnq 7393  1Qc1q 7394   ·Q cmq 7396  *Qcrq 7397   <Q cltq 7398  Pcnp 7404  1Pc1p 7405   ·P cmp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-imp 7582
This theorem is referenced by:  recexprlemex  7750
  Copyright terms: Public domain W3C validator