ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssu GIF version

Theorem recexprlem1ssu 7554
Description: The upper cut of one is a subset of the upper cut of 𝐴 ·P 𝐵. Lemma for recexpr 7558. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlem1ssu (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlem1ssu
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pru 7476 . . . 4 (2nd ‘1P) = {𝑤 ∣ 1Q <Q 𝑤}
21abeq2i 2268 . . 3 (𝑤 ∈ (2nd ‘1P) ↔ 1Q <Q 𝑤)
3 prop 7395 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
4 prmuloc2 7487 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ 1Q <Q 𝑤) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q 𝑤) ∈ (2nd𝐴))
53, 4sylan 281 . . . . 5 ((𝐴P ∧ 1Q <Q 𝑤) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q 𝑤) ∈ (2nd𝐴))
6 prnminu 7409 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
73, 6sylan 281 . . . . . . 7 ((𝐴P ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
87ad2ant2rl 503 . . . . . 6 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
9 simp3 984 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑧 <Q (𝑣 ·Q 𝑤))
10 simp2l 1008 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑣 ∈ (1st𝐴))
11 elprnql 7401 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → 𝑣Q)
123, 11sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑣 ∈ (1st𝐴)) → 𝑣Q)
1312ad2ant2r 501 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → 𝑣Q)
14133adant3 1002 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑣Q)
15 simp1r 1007 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 1Q <Q 𝑤)
16 ltrelnq 7285 . . . . . . . . . . . . . . . . . 18 <Q ⊆ (Q × Q)
1716brel 4638 . . . . . . . . . . . . . . . . 17 (1Q <Q 𝑤 → (1QQ𝑤Q))
1817simprd 113 . . . . . . . . . . . . . . . 16 (1Q <Q 𝑤𝑤Q)
1915, 18syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑤Q)
20 recclnq 7312 . . . . . . . . . . . . . . . 16 (𝑤Q → (*Q𝑤) ∈ Q)
2119, 20syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q𝑤) ∈ Q)
22 mulassnqg 7304 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q ∧ (*Q𝑤) ∈ Q) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = (𝑣 ·Q (𝑤 ·Q (*Q𝑤))))
2314, 19, 21, 22syl3anc 1220 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = (𝑣 ·Q (𝑤 ·Q (*Q𝑤))))
24 recidnq 7313 . . . . . . . . . . . . . . . 16 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
2519, 24syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑤 ·Q (*Q𝑤)) = 1Q)
2625oveq2d 5840 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q (𝑤 ·Q (*Q𝑤))) = (𝑣 ·Q 1Q))
27 mulidnq 7309 . . . . . . . . . . . . . . 15 (𝑣Q → (𝑣 ·Q 1Q) = 𝑣)
2814, 27syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q 1Q) = 𝑣)
2923, 26, 283eqtrd 2194 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = 𝑣)
3029eleq1d 2226 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴) ↔ 𝑣 ∈ (1st𝐴)))
3110, 30mpbird 166 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴))
32 ltrnqi 7341 . . . . . . . . . . . . 13 (𝑧 <Q (𝑣 ·Q 𝑤) → (*Q‘(𝑣 ·Q 𝑤)) <Q (*Q𝑧))
33 ltmnqg 7321 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
3433adantl 275 . . . . . . . . . . . . . 14 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
35 mulclnq 7296 . . . . . . . . . . . . . . . 16 ((𝑣Q𝑤Q) → (𝑣 ·Q 𝑤) ∈ Q)
3614, 19, 35syl2anc 409 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q 𝑤) ∈ Q)
37 recclnq 7312 . . . . . . . . . . . . . . 15 ((𝑣 ·Q 𝑤) ∈ Q → (*Q‘(𝑣 ·Q 𝑤)) ∈ Q)
3836, 37syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q‘(𝑣 ·Q 𝑤)) ∈ Q)
3916brel 4638 . . . . . . . . . . . . . . . . 17 (𝑧 <Q (𝑣 ·Q 𝑤) → (𝑧Q ∧ (𝑣 ·Q 𝑤) ∈ Q))
4039simpld 111 . . . . . . . . . . . . . . . 16 (𝑧 <Q (𝑣 ·Q 𝑤) → 𝑧Q)
419, 40syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑧Q)
42 recclnq 7312 . . . . . . . . . . . . . . 15 (𝑧Q → (*Q𝑧) ∈ Q)
4341, 42syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q𝑧) ∈ Q)
44 mulcomnqg 7303 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
4544adantl 275 . . . . . . . . . . . . . 14 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
4634, 38, 43, 19, 45caovord2d 5990 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘(𝑣 ·Q 𝑤)) <Q (*Q𝑧) ↔ ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
4732, 46syl5ib 153 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑧 <Q (𝑣 ·Q 𝑤) → ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
48 1nq 7286 . . . . . . . . . . . . . . . . 17 1QQ
49 mulidnq 7309 . . . . . . . . . . . . . . . . 17 (1QQ → (1Q ·Q 1Q) = 1Q)
5048, 49ax-mp 5 . . . . . . . . . . . . . . . 16 (1Q ·Q 1Q) = 1Q
51 mulcomnqg 7303 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ·Q 𝑤) ∈ Q ∧ (*Q‘(𝑣 ·Q 𝑤)) ∈ Q) → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)))
5237, 51mpdan 418 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ·Q 𝑤) ∈ Q → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)))
53 recidnq 7313 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ·Q 𝑤) ∈ Q → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = 1Q)
5452, 53eqtr3d 2192 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ·Q 𝑤) ∈ Q → ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) = 1Q)
5554, 24oveqan12d 5843 . . . . . . . . . . . . . . . . . 18 (((𝑣 ·Q 𝑤) ∈ Q𝑤Q) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
5636, 19, 55syl2anc 409 . . . . . . . . . . . . . . . . 17 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
57 mulassnqg 7304 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔QQ) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
5857adantl 275 . . . . . . . . . . . . . . . . . 18 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
59 mulclnq 7296 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
6059adantl 275 . . . . . . . . . . . . . . . . . 18 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) ∈ Q)
6138, 36, 19, 45, 58, 21, 60caov4d 6005 . . . . . . . . . . . . . . . . 17 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))))
6256, 61eqtr3d 2192 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (1Q ·Q 1Q) = (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))))
6350, 62syl5reqr 2205 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q)
6460, 38, 19caovcld 5974 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q)
6560, 36, 21caovcld 5974 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ Q)
66 recmulnqg 7311 . . . . . . . . . . . . . . . 16 ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q ∧ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ Q) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q))
6764, 65, 66syl2anc 409 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q))
6863, 67mpbird 166 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)))
6968eleq1d 2226 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴) ↔ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴)))
7069biimprd 157 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴) → (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)))
71 breq1 3968 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → (𝑦 <Q ((*Q𝑧) ·Q 𝑤) ↔ ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
72 fveq2 5468 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)))
7372eleq1d 2226 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)))
7471, 73anbi12d 465 . . . . . . . . . . . . . . 15 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → ((𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴))))
7574spcegv 2800 . . . . . . . . . . . . . 14 (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴))))
7664, 75syl 14 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴))))
77 recexpr.1 . . . . . . . . . . . . . 14 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
7877recexprlemelu 7543 . . . . . . . . . . . . 13 (((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴)))
7976, 78syl6ibr 161 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵)))
8047, 70, 79syl2and 293 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑧 <Q (𝑣 ·Q 𝑤) ∧ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵)))
819, 31, 80mp2and 430 . . . . . . . . . 10 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵))
82 mulidnq 7309 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
83 mulcomnqg 7303 . . . . . . . . . . . . . . 15 ((𝑤Q ∧ 1QQ) → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8448, 83mpan2 422 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8582, 84eqtr3d 2192 . . . . . . . . . . . . 13 (𝑤Q𝑤 = (1Q ·Q 𝑤))
8685adantl 275 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → 𝑤 = (1Q ·Q 𝑤))
87 recidnq 7313 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
8887oveq1d 5839 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
8988adantr 274 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
90 mulassnqg 7304 . . . . . . . . . . . . . 14 ((𝑧Q ∧ (*Q𝑧) ∈ Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9142, 90syl3an2 1254 . . . . . . . . . . . . 13 ((𝑧Q𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
92913anidm12 1277 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9386, 89, 923eqtr2d 2196 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9441, 19, 93syl2anc 409 . . . . . . . . . 10 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
95 oveq2 5832 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9695eqeq2d 2169 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9796rspcev 2816 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵) ∧ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥))
9881, 94, 97syl2anc 409 . . . . . . . . 9 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥))
99983expia 1187 . . . . . . . 8 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (𝑧 <Q (𝑣 ·Q 𝑤) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10099reximdv 2558 . . . . . . 7 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤) → ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10177recexprlempr 7552 . . . . . . . . 9 (𝐴P𝐵P)
102 df-imp 7389 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
103102, 59genpelvu 7433 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
104101, 103mpdan 418 . . . . . . . 8 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
105104ad2antrr 480 . . . . . . 7 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
106100, 105sylibrd 168 . . . . . 6 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
1078, 106mpd 13 . . . . 5 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)))
1085, 107rexlimddv 2579 . . . 4 ((𝐴P ∧ 1Q <Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)))
109108ex 114 . . 3 (𝐴P → (1Q <Q 𝑤𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
1102, 109syl5bi 151 . 2 (𝐴P → (𝑤 ∈ (2nd ‘1P) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
111110ssrdv 3134 1 (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wex 1472  wcel 2128  {cab 2143  wrex 2436  wss 3102  cop 3563   class class class wbr 3965  cfv 5170  (class class class)co 5824  1st c1st 6086  2nd c2nd 6087  Qcnq 7200  1Qc1q 7201   ·Q cmq 7203  *Qcrq 7204   <Q cltq 7205  Pcnp 7211  1Pc1p 7212   ·P cmp 7214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-1o 6363  df-2o 6364  df-oadd 6367  df-omul 6368  df-er 6480  df-ec 6482  df-qs 6486  df-ni 7224  df-pli 7225  df-mi 7226  df-lti 7227  df-plpq 7264  df-mpq 7265  df-enq 7267  df-nqqs 7268  df-plqqs 7269  df-mqqs 7270  df-1nqqs 7271  df-rq 7272  df-ltnqqs 7273  df-enq0 7344  df-nq0 7345  df-0nq0 7346  df-plq0 7347  df-mq0 7348  df-inp 7386  df-i1p 7387  df-imp 7389
This theorem is referenced by:  recexprlemex  7557
  Copyright terms: Public domain W3C validator