ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssu GIF version

Theorem recexprlem1ssu 7701
Description: The upper cut of one is a subset of the upper cut of 𝐴 ·P 𝐵. Lemma for recexpr 7705. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlem1ssu (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlem1ssu
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pru 7623 . . . 4 (2nd ‘1P) = {𝑤 ∣ 1Q <Q 𝑤}
21abeq2i 2307 . . 3 (𝑤 ∈ (2nd ‘1P) ↔ 1Q <Q 𝑤)
3 prop 7542 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
4 prmuloc2 7634 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ 1Q <Q 𝑤) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q 𝑤) ∈ (2nd𝐴))
53, 4sylan 283 . . . . 5 ((𝐴P ∧ 1Q <Q 𝑤) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q 𝑤) ∈ (2nd𝐴))
6 prnminu 7556 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
73, 6sylan 283 . . . . . . 7 ((𝐴P ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
87ad2ant2rl 511 . . . . . 6 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
9 simp3 1001 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑧 <Q (𝑣 ·Q 𝑤))
10 simp2l 1025 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑣 ∈ (1st𝐴))
11 elprnql 7548 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → 𝑣Q)
123, 11sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑣 ∈ (1st𝐴)) → 𝑣Q)
1312ad2ant2r 509 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → 𝑣Q)
14133adant3 1019 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑣Q)
15 simp1r 1024 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 1Q <Q 𝑤)
16 ltrelnq 7432 . . . . . . . . . . . . . . . . . 18 <Q ⊆ (Q × Q)
1716brel 4715 . . . . . . . . . . . . . . . . 17 (1Q <Q 𝑤 → (1QQ𝑤Q))
1817simprd 114 . . . . . . . . . . . . . . . 16 (1Q <Q 𝑤𝑤Q)
1915, 18syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑤Q)
20 recclnq 7459 . . . . . . . . . . . . . . . 16 (𝑤Q → (*Q𝑤) ∈ Q)
2119, 20syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q𝑤) ∈ Q)
22 mulassnqg 7451 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q ∧ (*Q𝑤) ∈ Q) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = (𝑣 ·Q (𝑤 ·Q (*Q𝑤))))
2314, 19, 21, 22syl3anc 1249 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = (𝑣 ·Q (𝑤 ·Q (*Q𝑤))))
24 recidnq 7460 . . . . . . . . . . . . . . . 16 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
2519, 24syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑤 ·Q (*Q𝑤)) = 1Q)
2625oveq2d 5938 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q (𝑤 ·Q (*Q𝑤))) = (𝑣 ·Q 1Q))
27 mulidnq 7456 . . . . . . . . . . . . . . 15 (𝑣Q → (𝑣 ·Q 1Q) = 𝑣)
2814, 27syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q 1Q) = 𝑣)
2923, 26, 283eqtrd 2233 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = 𝑣)
3029eleq1d 2265 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴) ↔ 𝑣 ∈ (1st𝐴)))
3110, 30mpbird 167 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴))
32 ltrnqi 7488 . . . . . . . . . . . . 13 (𝑧 <Q (𝑣 ·Q 𝑤) → (*Q‘(𝑣 ·Q 𝑤)) <Q (*Q𝑧))
33 ltmnqg 7468 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
3433adantl 277 . . . . . . . . . . . . . 14 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
35 mulclnq 7443 . . . . . . . . . . . . . . . 16 ((𝑣Q𝑤Q) → (𝑣 ·Q 𝑤) ∈ Q)
3614, 19, 35syl2anc 411 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q 𝑤) ∈ Q)
37 recclnq 7459 . . . . . . . . . . . . . . 15 ((𝑣 ·Q 𝑤) ∈ Q → (*Q‘(𝑣 ·Q 𝑤)) ∈ Q)
3836, 37syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q‘(𝑣 ·Q 𝑤)) ∈ Q)
3916brel 4715 . . . . . . . . . . . . . . . . 17 (𝑧 <Q (𝑣 ·Q 𝑤) → (𝑧Q ∧ (𝑣 ·Q 𝑤) ∈ Q))
4039simpld 112 . . . . . . . . . . . . . . . 16 (𝑧 <Q (𝑣 ·Q 𝑤) → 𝑧Q)
419, 40syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑧Q)
42 recclnq 7459 . . . . . . . . . . . . . . 15 (𝑧Q → (*Q𝑧) ∈ Q)
4341, 42syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q𝑧) ∈ Q)
44 mulcomnqg 7450 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
4544adantl 277 . . . . . . . . . . . . . 14 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
4634, 38, 43, 19, 45caovord2d 6093 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘(𝑣 ·Q 𝑤)) <Q (*Q𝑧) ↔ ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
4732, 46imbitrid 154 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑧 <Q (𝑣 ·Q 𝑤) → ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
48 mulcomnqg 7450 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ·Q 𝑤) ∈ Q ∧ (*Q‘(𝑣 ·Q 𝑤)) ∈ Q) → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)))
4937, 48mpdan 421 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ·Q 𝑤) ∈ Q → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)))
50 recidnq 7460 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ·Q 𝑤) ∈ Q → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = 1Q)
5149, 50eqtr3d 2231 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ·Q 𝑤) ∈ Q → ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) = 1Q)
5251, 24oveqan12d 5941 . . . . . . . . . . . . . . . . . 18 (((𝑣 ·Q 𝑤) ∈ Q𝑤Q) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
5336, 19, 52syl2anc 411 . . . . . . . . . . . . . . . . 17 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
54 mulassnqg 7451 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔QQ) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
5554adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
56 mulclnq 7443 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
5756adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) ∈ Q)
5838, 36, 19, 45, 55, 21, 57caov4d 6108 . . . . . . . . . . . . . . . . 17 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))))
5953, 58eqtr3d 2231 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (1Q ·Q 1Q) = (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))))
60 1nq 7433 . . . . . . . . . . . . . . . . 17 1QQ
61 mulidnq 7456 . . . . . . . . . . . . . . . . 17 (1QQ → (1Q ·Q 1Q) = 1Q)
6260, 61ax-mp 5 . . . . . . . . . . . . . . . 16 (1Q ·Q 1Q) = 1Q
6359, 62eqtr3di 2244 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q)
6457, 38, 19caovcld 6077 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q)
6557, 36, 21caovcld 6077 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ Q)
66 recmulnqg 7458 . . . . . . . . . . . . . . . 16 ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q ∧ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ Q) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q))
6764, 65, 66syl2anc 411 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q))
6863, 67mpbird 167 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)))
6968eleq1d 2265 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴) ↔ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴)))
7069biimprd 158 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴) → (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)))
71 breq1 4036 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → (𝑦 <Q ((*Q𝑧) ·Q 𝑤) ↔ ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
72 fveq2 5558 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)))
7372eleq1d 2265 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)))
7471, 73anbi12d 473 . . . . . . . . . . . . . . 15 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → ((𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴))))
7574spcegv 2852 . . . . . . . . . . . . . 14 (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴))))
7664, 75syl 14 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴))))
77 recexpr.1 . . . . . . . . . . . . . 14 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
7877recexprlemelu 7690 . . . . . . . . . . . . 13 (((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴)))
7976, 78imbitrrdi 162 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵)))
8047, 70, 79syl2and 295 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑧 <Q (𝑣 ·Q 𝑤) ∧ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵)))
819, 31, 80mp2and 433 . . . . . . . . . 10 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵))
82 mulidnq 7456 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
83 mulcomnqg 7450 . . . . . . . . . . . . . . 15 ((𝑤Q ∧ 1QQ) → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8460, 83mpan2 425 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8582, 84eqtr3d 2231 . . . . . . . . . . . . 13 (𝑤Q𝑤 = (1Q ·Q 𝑤))
8685adantl 277 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → 𝑤 = (1Q ·Q 𝑤))
87 recidnq 7460 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
8887oveq1d 5937 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
8988adantr 276 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
90 mulassnqg 7451 . . . . . . . . . . . . . 14 ((𝑧Q ∧ (*Q𝑧) ∈ Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9142, 90syl3an2 1283 . . . . . . . . . . . . 13 ((𝑧Q𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
92913anidm12 1306 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9386, 89, 923eqtr2d 2235 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9441, 19, 93syl2anc 411 . . . . . . . . . 10 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
95 oveq2 5930 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9695eqeq2d 2208 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9796rspcev 2868 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵) ∧ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥))
9881, 94, 97syl2anc 411 . . . . . . . . 9 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥))
99983expia 1207 . . . . . . . 8 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (𝑧 <Q (𝑣 ·Q 𝑤) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10099reximdv 2598 . . . . . . 7 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤) → ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10177recexprlempr 7699 . . . . . . . . 9 (𝐴P𝐵P)
102 df-imp 7536 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
103102, 56genpelvu 7580 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
104101, 103mpdan 421 . . . . . . . 8 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
105104ad2antrr 488 . . . . . . 7 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
106100, 105sylibrd 169 . . . . . 6 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
1078, 106mpd 13 . . . . 5 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)))
1085, 107rexlimddv 2619 . . . 4 ((𝐴P ∧ 1Q <Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)))
109108ex 115 . . 3 (𝐴P → (1Q <Q 𝑤𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
1102, 109biimtrid 152 . 2 (𝐴P → (𝑤 ∈ (2nd ‘1P) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
111110ssrdv 3189 1 (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wrex 2476  wss 3157  cop 3625   class class class wbr 4033  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Qcnq 7347  1Qc1q 7348   ·Q cmq 7350  *Qcrq 7351   <Q cltq 7352  Pcnp 7358  1Pc1p 7359   ·P cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-imp 7536
This theorem is referenced by:  recexprlemex  7704
  Copyright terms: Public domain W3C validator