ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssu GIF version

Theorem recexprlem1ssu 7449
Description: The upper cut of one is a subset of the upper cut of 𝐴 ·P 𝐵. Lemma for recexpr 7453. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlem1ssu (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlem1ssu
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pru 7371 . . . 4 (2nd ‘1P) = {𝑤 ∣ 1Q <Q 𝑤}
21abeq2i 2250 . . 3 (𝑤 ∈ (2nd ‘1P) ↔ 1Q <Q 𝑤)
3 prop 7290 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
4 prmuloc2 7382 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ 1Q <Q 𝑤) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q 𝑤) ∈ (2nd𝐴))
53, 4sylan 281 . . . . 5 ((𝐴P ∧ 1Q <Q 𝑤) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q 𝑤) ∈ (2nd𝐴))
6 prnminu 7304 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
73, 6sylan 281 . . . . . . 7 ((𝐴P ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
87ad2ant2rl 502 . . . . . 6 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → ∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤))
9 simp3 983 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑧 <Q (𝑣 ·Q 𝑤))
10 simp2l 1007 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑣 ∈ (1st𝐴))
11 elprnql 7296 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → 𝑣Q)
123, 11sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑣 ∈ (1st𝐴)) → 𝑣Q)
1312ad2ant2r 500 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → 𝑣Q)
14133adant3 1001 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑣Q)
15 simp1r 1006 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 1Q <Q 𝑤)
16 ltrelnq 7180 . . . . . . . . . . . . . . . . . 18 <Q ⊆ (Q × Q)
1716brel 4591 . . . . . . . . . . . . . . . . 17 (1Q <Q 𝑤 → (1QQ𝑤Q))
1817simprd 113 . . . . . . . . . . . . . . . 16 (1Q <Q 𝑤𝑤Q)
1915, 18syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑤Q)
20 recclnq 7207 . . . . . . . . . . . . . . . 16 (𝑤Q → (*Q𝑤) ∈ Q)
2119, 20syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q𝑤) ∈ Q)
22 mulassnqg 7199 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q ∧ (*Q𝑤) ∈ Q) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = (𝑣 ·Q (𝑤 ·Q (*Q𝑤))))
2314, 19, 21, 22syl3anc 1216 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = (𝑣 ·Q (𝑤 ·Q (*Q𝑤))))
24 recidnq 7208 . . . . . . . . . . . . . . . 16 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
2519, 24syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑤 ·Q (*Q𝑤)) = 1Q)
2625oveq2d 5790 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q (𝑤 ·Q (*Q𝑤))) = (𝑣 ·Q 1Q))
27 mulidnq 7204 . . . . . . . . . . . . . . 15 (𝑣Q → (𝑣 ·Q 1Q) = 𝑣)
2814, 27syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q 1Q) = 𝑣)
2923, 26, 283eqtrd 2176 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) = 𝑣)
3029eleq1d 2208 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴) ↔ 𝑣 ∈ (1st𝐴)))
3110, 30mpbird 166 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴))
32 ltrnqi 7236 . . . . . . . . . . . . 13 (𝑧 <Q (𝑣 ·Q 𝑤) → (*Q‘(𝑣 ·Q 𝑤)) <Q (*Q𝑧))
33 ltmnqg 7216 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
3433adantl 275 . . . . . . . . . . . . . 14 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
35 mulclnq 7191 . . . . . . . . . . . . . . . 16 ((𝑣Q𝑤Q) → (𝑣 ·Q 𝑤) ∈ Q)
3614, 19, 35syl2anc 408 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑣 ·Q 𝑤) ∈ Q)
37 recclnq 7207 . . . . . . . . . . . . . . 15 ((𝑣 ·Q 𝑤) ∈ Q → (*Q‘(𝑣 ·Q 𝑤)) ∈ Q)
3836, 37syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q‘(𝑣 ·Q 𝑤)) ∈ Q)
3916brel 4591 . . . . . . . . . . . . . . . . 17 (𝑧 <Q (𝑣 ·Q 𝑤) → (𝑧Q ∧ (𝑣 ·Q 𝑤) ∈ Q))
4039simpld 111 . . . . . . . . . . . . . . . 16 (𝑧 <Q (𝑣 ·Q 𝑤) → 𝑧Q)
419, 40syl 14 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑧Q)
42 recclnq 7207 . . . . . . . . . . . . . . 15 (𝑧Q → (*Q𝑧) ∈ Q)
4341, 42syl 14 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q𝑧) ∈ Q)
44 mulcomnqg 7198 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
4544adantl 275 . . . . . . . . . . . . . 14 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
4634, 38, 43, 19, 45caovord2d 5940 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘(𝑣 ·Q 𝑤)) <Q (*Q𝑧) ↔ ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
4732, 46syl5ib 153 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (𝑧 <Q (𝑣 ·Q 𝑤) → ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
48 1nq 7181 . . . . . . . . . . . . . . . . 17 1QQ
49 mulidnq 7204 . . . . . . . . . . . . . . . . 17 (1QQ → (1Q ·Q 1Q) = 1Q)
5048, 49ax-mp 5 . . . . . . . . . . . . . . . 16 (1Q ·Q 1Q) = 1Q
51 mulcomnqg 7198 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ·Q 𝑤) ∈ Q ∧ (*Q‘(𝑣 ·Q 𝑤)) ∈ Q) → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)))
5237, 51mpdan 417 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ·Q 𝑤) ∈ Q → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)))
53 recidnq 7208 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ·Q 𝑤) ∈ Q → ((𝑣 ·Q 𝑤) ·Q (*Q‘(𝑣 ·Q 𝑤))) = 1Q)
5452, 53eqtr3d 2174 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ·Q 𝑤) ∈ Q → ((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) = 1Q)
5554, 24oveqan12d 5793 . . . . . . . . . . . . . . . . . 18 (((𝑣 ·Q 𝑤) ∈ Q𝑤Q) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
5636, 19, 55syl2anc 408 . . . . . . . . . . . . . . . . 17 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
57 mulassnqg 7199 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔QQ) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
5857adantl 275 . . . . . . . . . . . . . . . . . 18 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
59 mulclnq 7191 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
6059adantl 275 . . . . . . . . . . . . . . . . . 18 ((((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) ∈ Q)
6138, 36, 19, 45, 58, 21, 60caov4d 5955 . . . . . . . . . . . . . . . . 17 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q (𝑣 ·Q 𝑤)) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))))
6256, 61eqtr3d 2174 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (1Q ·Q 1Q) = (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))))
6350, 62syl5reqr 2187 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q)
6460, 38, 19caovcld 5924 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q)
6560, 36, 21caovcld 5924 . . . . . . . . . . . . . . . 16 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ Q)
66 recmulnqg 7206 . . . . . . . . . . . . . . . 16 ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q ∧ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ Q) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q))
6764, 65, 66syl2anc 408 . . . . . . . . . . . . . . 15 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ·Q ((𝑣 ·Q 𝑤) ·Q (*Q𝑤))) = 1Q))
6863, 67mpbird 166 . . . . . . . . . . . . . 14 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) = ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)))
6968eleq1d 2208 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴) ↔ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴)))
7069biimprd 157 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → (((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴) → (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)))
71 breq1 3932 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → (𝑦 <Q ((*Q𝑧) ·Q 𝑤) ↔ ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤)))
72 fveq2 5421 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)))
7372eleq1d 2208 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)))
7471, 73anbi12d 464 . . . . . . . . . . . . . . 15 (𝑦 = ((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) → ((𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴))))
7574spcegv 2774 . . . . . . . . . . . . . 14 (((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) ∈ Q → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴))))
7664, 75syl 14 . . . . . . . . . . . . 13 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴))))
77 recexpr.1 . . . . . . . . . . . . . 14 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
7877recexprlemelu 7438 . . . . . . . . . . . . 13 (((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q𝑦) ∈ (1st𝐴)))
7976, 78syl6ibr 161 . . . . . . . . . . . 12 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤) <Q ((*Q𝑧) ·Q 𝑤) ∧ (*Q‘((*Q‘(𝑣 ·Q 𝑤)) ·Q 𝑤)) ∈ (1st𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵)))
8047, 70, 79syl2and 293 . . . . . . . . . . 11 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((𝑧 <Q (𝑣 ·Q 𝑤) ∧ ((𝑣 ·Q 𝑤) ·Q (*Q𝑤)) ∈ (1st𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵)))
819, 31, 80mp2and 429 . . . . . . . . . 10 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵))
82 mulidnq 7204 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
83 mulcomnqg 7198 . . . . . . . . . . . . . . 15 ((𝑤Q ∧ 1QQ) → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8448, 83mpan2 421 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8582, 84eqtr3d 2174 . . . . . . . . . . . . 13 (𝑤Q𝑤 = (1Q ·Q 𝑤))
8685adantl 275 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → 𝑤 = (1Q ·Q 𝑤))
87 recidnq 7208 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
8887oveq1d 5789 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
8988adantr 274 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
90 mulassnqg 7199 . . . . . . . . . . . . . 14 ((𝑧Q ∧ (*Q𝑧) ∈ Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9142, 90syl3an2 1250 . . . . . . . . . . . . 13 ((𝑧Q𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
92913anidm12 1273 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9386, 89, 923eqtr2d 2178 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9441, 19, 93syl2anc 408 . . . . . . . . . 10 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
95 oveq2 5782 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9695eqeq2d 2151 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9796rspcev 2789 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ (2nd𝐵) ∧ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥))
9881, 94, 97syl2anc 408 . . . . . . . . 9 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴)) ∧ 𝑧 <Q (𝑣 ·Q 𝑤)) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥))
99983expia 1183 . . . . . . . 8 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (𝑧 <Q (𝑣 ·Q 𝑤) → ∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10099reximdv 2533 . . . . . . 7 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤) → ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10177recexprlempr 7447 . . . . . . . . 9 (𝐴P𝐵P)
102 df-imp 7284 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
103102, 59genpelvu 7328 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
104101, 103mpdan 417 . . . . . . . 8 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
105104ad2antrr 479 . . . . . . 7 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑥 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑥)))
106100, 105sylibrd 168 . . . . . 6 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → (∃𝑧 ∈ (2nd𝐴)𝑧 <Q (𝑣 ·Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
1078, 106mpd 13 . . . . 5 (((𝐴P ∧ 1Q <Q 𝑤) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q 𝑤) ∈ (2nd𝐴))) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)))
1085, 107rexlimddv 2554 . . . 4 ((𝐴P ∧ 1Q <Q 𝑤) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)))
109108ex 114 . . 3 (𝐴P → (1Q <Q 𝑤𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
1102, 109syl5bi 151 . 2 (𝐴P → (𝑤 ∈ (2nd ‘1P) → 𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵))))
111110ssrdv 3103 1 (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wex 1468  wcel 1480  {cab 2125  wrex 2417  wss 3071  cop 3530   class class class wbr 3929  cfv 5123  (class class class)co 5774  1st c1st 6036  2nd c2nd 6037  Qcnq 7095  1Qc1q 7096   ·Q cmq 7098  *Qcrq 7099   <Q cltq 7100  Pcnp 7106  1Pc1p 7107   ·P cmp 7109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7119  df-pli 7120  df-mi 7121  df-lti 7122  df-plpq 7159  df-mpq 7160  df-enq 7162  df-nqqs 7163  df-plqqs 7164  df-mqqs 7165  df-1nqqs 7166  df-rq 7167  df-ltnqqs 7168  df-enq0 7239  df-nq0 7240  df-0nq0 7241  df-plq0 7242  df-mq0 7243  df-inp 7281  df-i1p 7282  df-imp 7284
This theorem is referenced by:  recexprlemex  7452
  Copyright terms: Public domain W3C validator