ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2and Unicode version

Theorem syl2and 289
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
syl2and.1  |-  ( ph  ->  ( ps  ->  ch ) )
syl2and.2  |-  ( ph  ->  ( th  ->  ta ) )
syl2and.3  |-  ( ph  ->  ( ( ch  /\  ta )  ->  et ) )
Assertion
Ref Expression
syl2and  |-  ( ph  ->  ( ( ps  /\  th )  ->  et )
)

Proof of Theorem syl2and
StepHypRef Expression
1 syl2and.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 syl2and.2 . . 3  |-  ( ph  ->  ( th  ->  ta ) )
3 syl2and.3 . . 3  |-  ( ph  ->  ( ( ch  /\  ta )  ->  et ) )
42, 3sylan2d 288 . 2  |-  ( ph  ->  ( ( ch  /\  th )  ->  et )
)
51, 4syland 287 1  |-  ( ph  ->  ( ( ps  /\  th )  ->  et )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  anim12d  328  recexprlem1ssl  7182  recexprlem1ssu  7183  fzen  9447  bezoutlembi  11259  rpmulgcd2  11342
  Copyright terms: Public domain W3C validator