ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulgcd2 GIF version

Theorem rpmulgcd2 12263
Description: If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
rpmulgcd2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem rpmulgcd2
StepHypRef Expression
1 simpl1 1002 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝐾 ∈ ℤ)
2 simpl2 1003 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
3 simpl3 1004 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
42, 3zmulcld 9454 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 12135 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
61, 2gcdcld 12135 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℕ0)
71, 3gcdcld 12135 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℕ0)
86, 7nn0mulcld 9307 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0)
9 mulgcddvds 12262 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
109adantr 276 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
11 gcddvds 12130 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
121, 2, 11syl2anc 411 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
1312simpld 112 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝐾)
14 gcddvds 12130 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
151, 3, 14syl2anc 411 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
1615simpld 112 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝐾)
176nn0zd 9446 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∈ ℤ)
187nn0zd 9446 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∈ ℤ)
19 gcddvds 12130 . . . . . . . . . . 11 (((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2017, 18, 19syl2anc 411 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁)))
2120simpld 112 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
2212simprd 114 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑀) ∥ 𝑀)
2317, 18gcdcld 12135 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0)
2423nn0zd 9446 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ)
25 dvdstr 11993 . . . . . . . . . 10 ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ (𝐾 gcd 𝑀) ∥ 𝑀) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀))
2624, 17, 2, 25syl3anc 1249 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) ∧ (𝐾 gcd 𝑀) ∥ 𝑀) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀))
2721, 22, 26mp2and 433 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀)
2820simprd 114 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁))
2915simprd 114 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd 𝑁) ∥ 𝑁)
30 dvdstr 11993 . . . . . . . . . 10 ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁) ∧ (𝐾 gcd 𝑁) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁))
3124, 18, 3, 30syl3anc 1249 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑁) ∧ (𝐾 gcd 𝑁) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁))
3228, 29, 31mp2and 433 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁)
33 dvdsgcd 12179 . . . . . . . . 9 ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3424, 2, 3, 33syl3anc 1249 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑀 ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 𝑁) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁)))
3527, 32, 34mp2and 433 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ (𝑀 gcd 𝑁))
36 simpr 110 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
3735, 36breqtrd 4059 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1)
38 dvds1 12018 . . . . . . 7 (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∈ ℕ0 → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
3923, 38syl 14 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) ∥ 1 ↔ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1))
4037, 39mpbid 147 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1)
41 coprmdvds2 12261 . . . . 5 ((((𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 gcd 𝑀) gcd (𝐾 gcd 𝑁)) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
4217, 18, 1, 40, 41syl31anc 1252 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝐾) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾))
4313, 16, 42mp2and 433 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾)
44 dvdscmul 11983 . . . . . 6 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
4518, 3, 17, 44syl3anc 1249 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑁) ∥ 𝑁 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁)))
46 dvdsmulc 11984 . . . . . 6 (((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4717, 2, 3, 46syl3anc 1249 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) ∥ 𝑀 → ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)))
4817, 18zmulcld 9454 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ)
4917, 3zmulcld 9454 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ)
50 dvdstr 11993 . . . . . 6 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ ((𝐾 gcd 𝑀) · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
5148, 49, 4, 50syl3anc 1249 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · 𝑁) ∧ ((𝐾 gcd 𝑀) · 𝑁) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
5245, 47, 51syl2and 295 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (((𝐾 gcd 𝑁) ∥ 𝑁 ∧ (𝐾 gcd 𝑀) ∥ 𝑀) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)))
5329, 22, 52mp2and 433 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁))
54 dvdsgcd 12179 . . . 4 ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5548, 1, 4, 54syl3anc 1249 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝑀 · 𝑁)) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁))))
5643, 53, 55mp2and 433 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))
57 dvdseq 12013 . 2 ((((𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0 ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∈ ℕ0) ∧ ((𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∧ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) ∥ (𝐾 gcd (𝑀 · 𝑁)))) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
585, 8, 10, 56, 57syl22anc 1250 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  1c1 7880   · cmul 7884  0cn0 9249  cz 9326  cdvds 11952   gcd cgcd 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121
This theorem is referenced by:  mpodvdsmulf1o  15226
  Copyright terms: Public domain W3C validator