Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9r | GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9r 73 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
4 | 3 | imp 123 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: spimt 1724 sbequi 1827 updjudhf 7044 genpcdl 7460 genpcuu 7461 iccsupr 9902 climuni 11234 tgcn 12848 metrest 13146 |
Copyright terms: Public domain | W3C validator |