ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpcuu GIF version

Theorem genpcuu 7675
Description: Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcuu.2 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
Assertion
Ref Expression
genpcuu ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑓,𝐹,𝑔,
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpcuu
StepHypRef Expression
1 ltrelnq 7520 . . . . . . 7 <Q ⊆ (Q × Q)
21brel 4748 . . . . . 6 (𝑓 <Q 𝑥 → (𝑓Q𝑥Q))
32simprd 114 . . . . 5 (𝑓 <Q 𝑥𝑥Q)
4 genpelvl.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
5 genpelvl.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelvu 7668 . . . . . . . 8 ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)))
76adantr 276 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)))
8 breq1 4065 . . . . . . . . . . . . 13 (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥 ↔ (𝑔𝐺) <Q 𝑥))
98biimpd 144 . . . . . . . . . . . 12 (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥 → (𝑔𝐺) <Q 𝑥))
10 genpcuu.2 . . . . . . . . . . . 12 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
119, 10sylan9r 410 . . . . . . . . . . 11 (((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) ∧ 𝑓 = (𝑔𝐺)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
1211exp31 364 . . . . . . . . . 10 (((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1312an4s 590 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵))) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1413impancom 260 . . . . . . . 8 (((𝐴P𝐵P) ∧ 𝑥Q) → ((𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵)) → (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1514rexlimdvv 2635 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
167, 15sylbid 150 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
1716ex 115 . . . . 5 ((𝐴P𝐵P) → (𝑥Q → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
183, 17syl5 32 . . . 4 ((𝐴P𝐵P) → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1918com34 83 . . 3 ((𝐴P𝐵P) → (𝑓 <Q 𝑥 → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
2019pm2.43d 50 . 2 ((𝐴P𝐵P) → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
2120com23 78 1 ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wrex 2489  {crab 2492  cop 3649   class class class wbr 4062  cfv 5294  (class class class)co 5974  cmpo 5976  1st c1st 6254  2nd c2nd 6255  Qcnq 7435   <Q cltq 7440  Pcnp 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-qs 6656  df-ni 7459  df-nqqs 7503  df-ltnqqs 7508  df-inp 7621
This theorem is referenced by:  genprndu  7677
  Copyright terms: Public domain W3C validator