ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpcuu GIF version

Theorem genpcuu 7321
Description: Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcuu.2 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
Assertion
Ref Expression
genpcuu ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑓,𝐹,𝑔,
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpcuu
StepHypRef Expression
1 ltrelnq 7166 . . . . . . 7 <Q ⊆ (Q × Q)
21brel 4586 . . . . . 6 (𝑓 <Q 𝑥 → (𝑓Q𝑥Q))
32simprd 113 . . . . 5 (𝑓 <Q 𝑥𝑥Q)
4 genpelvl.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
5 genpelvl.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelvu 7314 . . . . . . . 8 ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)))
76adantr 274 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)))
8 breq1 3927 . . . . . . . . . . . . 13 (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥 ↔ (𝑔𝐺) <Q 𝑥))
98biimpd 143 . . . . . . . . . . . 12 (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥 → (𝑔𝐺) <Q 𝑥))
10 genpcuu.2 . . . . . . . . . . . 12 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
119, 10sylan9r 407 . . . . . . . . . . 11 (((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) ∧ 𝑓 = (𝑔𝐺)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
1211exp31 361 . . . . . . . . . 10 (((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1312an4s 577 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵))) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1413impancom 258 . . . . . . . 8 (((𝐴P𝐵P) ∧ 𝑥Q) → ((𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵)) → (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1514rexlimdvv 2554 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
167, 15sylbid 149 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
1716ex 114 . . . . 5 ((𝐴P𝐵P) → (𝑥Q → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
183, 17syl5 32 . . . 4 ((𝐴P𝐵P) → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1918com34 83 . . 3 ((𝐴P𝐵P) → (𝑓 <Q 𝑥 → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
2019pm2.43d 50 . 2 ((𝐴P𝐵P) → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
2120com23 78 1 ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wrex 2415  {crab 2418  cop 3525   class class class wbr 3924  cfv 5118  (class class class)co 5767  cmpo 5769  1st c1st 6029  2nd c2nd 6030  Qcnq 7081   <Q cltq 7086  Pcnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-qs 6428  df-ni 7105  df-nqqs 7149  df-ltnqqs 7154  df-inp 7267
This theorem is referenced by:  genprndu  7323
  Copyright terms: Public domain W3C validator