Proof of Theorem genpcuu
| Step | Hyp | Ref
| Expression |
| 1 | | ltrelnq 7432 |
. . . . . . 7
⊢
<Q ⊆ (Q ×
Q) |
| 2 | 1 | brel 4715 |
. . . . . 6
⊢ (𝑓 <Q
𝑥 → (𝑓 ∈ Q ∧
𝑥 ∈
Q)) |
| 3 | 2 | simprd 114 |
. . . . 5
⊢ (𝑓 <Q
𝑥 → 𝑥 ∈ Q) |
| 4 | | genpelvl.1 |
. . . . . . . . 9
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣
∃𝑦 ∈
Q ∃𝑧
∈ Q (𝑦
∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q
∃𝑧 ∈
Q (𝑦 ∈
(2nd ‘𝑤)
∧ 𝑧 ∈
(2nd ‘𝑣)
∧ 𝑥 = (𝑦𝐺𝑧))}〉) |
| 5 | | genpelvl.2 |
. . . . . . . . 9
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦𝐺𝑧) ∈ Q) |
| 6 | 4, 5 | genpelvu 7580 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑓 ∈
(2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd ‘𝐴)∃ℎ ∈ (2nd ‘𝐵)𝑓 = (𝑔𝐺ℎ))) |
| 7 | 6 | adantr 276 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑥 ∈
Q) → (𝑓
∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd ‘𝐴)∃ℎ ∈ (2nd ‘𝐵)𝑓 = (𝑔𝐺ℎ))) |
| 8 | | breq1 4036 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑓 <Q 𝑥 ↔ (𝑔𝐺ℎ) <Q 𝑥)) |
| 9 | 8 | biimpd 144 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑓 <Q 𝑥 → (𝑔𝐺ℎ) <Q 𝑥)) |
| 10 | | genpcuu.2 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝑔 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
ℎ ∈ (2nd
‘𝐵))) ∧ 𝑥 ∈ Q) →
((𝑔𝐺ℎ) <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))) |
| 11 | 9, 10 | sylan9r 410 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
P ∧ 𝑔
∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (2nd
‘𝐵))) ∧ 𝑥 ∈ Q) ∧
𝑓 = (𝑔𝐺ℎ)) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))) |
| 12 | 11 | exp31 364 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝑔 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
ℎ ∈ (2nd
‘𝐵))) → (𝑥 ∈ Q →
(𝑓 = (𝑔𝐺ℎ) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))) |
| 13 | 12 | an4s 588 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑔 ∈
(2nd ‘𝐴)
∧ ℎ ∈
(2nd ‘𝐵)))
→ (𝑥 ∈
Q → (𝑓 =
(𝑔𝐺ℎ) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))) |
| 14 | 13 | impancom 260 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑥 ∈
Q) → ((𝑔
∈ (2nd ‘𝐴) ∧ ℎ ∈ (2nd ‘𝐵)) → (𝑓 = (𝑔𝐺ℎ) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))) |
| 15 | 14 | rexlimdvv 2621 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑥 ∈
Q) → (∃𝑔 ∈ (2nd ‘𝐴)∃ℎ ∈ (2nd ‘𝐵)𝑓 = (𝑔𝐺ℎ) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))) |
| 16 | 7, 15 | sylbid 150 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑥 ∈
Q) → (𝑓
∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))) |
| 17 | 16 | ex 115 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑥 ∈
Q → (𝑓
∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))) |
| 18 | 3, 17 | syl5 32 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑓
<Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))) |
| 19 | 18 | com34 83 |
. . 3
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑓
<Q 𝑥 → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))) |
| 20 | 19 | pm2.43d 50 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑓
<Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))) |
| 21 | 20 | com23 78 |
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑓 ∈
(2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))) |