ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpcuu GIF version

Theorem genpcuu 7229
Description: Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcuu.2 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
Assertion
Ref Expression
genpcuu ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑓,𝐹,𝑔,
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpcuu
StepHypRef Expression
1 ltrelnq 7074 . . . . . . 7 <Q ⊆ (Q × Q)
21brel 4529 . . . . . 6 (𝑓 <Q 𝑥 → (𝑓Q𝑥Q))
32simprd 113 . . . . 5 (𝑓 <Q 𝑥𝑥Q)
4 genpelvl.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
5 genpelvl.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelvu 7222 . . . . . . . 8 ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)))
76adantr 272 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)))
8 breq1 3878 . . . . . . . . . . . . 13 (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥 ↔ (𝑔𝐺) <Q 𝑥))
98biimpd 143 . . . . . . . . . . . 12 (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥 → (𝑔𝐺) <Q 𝑥))
10 genpcuu.2 . . . . . . . . . . . 12 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
119, 10sylan9r 405 . . . . . . . . . . 11 (((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) ∧ 𝑓 = (𝑔𝐺)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
1211exp31 359 . . . . . . . . . 10 (((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1312an4s 558 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵))) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1413impancom 258 . . . . . . . 8 (((𝐴P𝐵P) ∧ 𝑥Q) → ((𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵)) → (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1514rexlimdvv 2515 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
167, 15sylbid 149 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
1716ex 114 . . . . 5 ((𝐴P𝐵P) → (𝑥Q → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
183, 17syl5 32 . . . 4 ((𝐴P𝐵P) → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
1918com34 83 . . 3 ((𝐴P𝐵P) → (𝑓 <Q 𝑥 → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))))
2019pm2.43d 50 . 2 ((𝐴P𝐵P) → (𝑓 <Q 𝑥 → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
2120com23 78 1 ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 930   = wceq 1299  wcel 1448  wrex 2376  {crab 2379  cop 3477   class class class wbr 3875  cfv 5059  (class class class)co 5706  cmpo 5708  1st c1st 5967  2nd c2nd 5968  Qcnq 6989   <Q cltq 6994  Pcnp 7000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-qs 6365  df-ni 7013  df-nqqs 7057  df-ltnqqs 7062  df-inp 7175
This theorem is referenced by:  genprndu  7231
  Copyright terms: Public domain W3C validator