ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhf GIF version

Theorem updjudhf 7145
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhf (𝜑𝐻:(𝐴𝐵)⟶𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem updjudhf
StepHypRef Expression
1 eldju2ndl 7138 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ (1st𝑥) = ∅) → (2nd𝑥) ∈ 𝐴)
21ex 115 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ → (2nd𝑥) ∈ 𝐴))
3 updjud.f . . . . . 6 (𝜑𝐹:𝐴𝐶)
4 ffvelcdm 5695 . . . . . . 7 ((𝐹:𝐴𝐶 ∧ (2nd𝑥) ∈ 𝐴) → (𝐹‘(2nd𝑥)) ∈ 𝐶)
54ex 115 . . . . . 6 (𝐹:𝐴𝐶 → ((2nd𝑥) ∈ 𝐴 → (𝐹‘(2nd𝑥)) ∈ 𝐶))
63, 5syl 14 . . . . 5 (𝜑 → ((2nd𝑥) ∈ 𝐴 → (𝐹‘(2nd𝑥)) ∈ 𝐶))
72, 6sylan9r 410 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) = ∅ → (𝐹‘(2nd𝑥)) ∈ 𝐶))
87imp 124 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (1st𝑥) = ∅) → (𝐹‘(2nd𝑥)) ∈ 𝐶)
9 df-ne 2368 . . . . 5 ((1st𝑥) ≠ ∅ ↔ ¬ (1st𝑥) = ∅)
10 eldju2ndr 7139 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ (1st𝑥) ≠ ∅) → (2nd𝑥) ∈ 𝐵)
1110ex 115 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) ≠ ∅ → (2nd𝑥) ∈ 𝐵))
12 updjud.g . . . . . . 7 (𝜑𝐺:𝐵𝐶)
13 ffvelcdm 5695 . . . . . . . 8 ((𝐺:𝐵𝐶 ∧ (2nd𝑥) ∈ 𝐵) → (𝐺‘(2nd𝑥)) ∈ 𝐶)
1413ex 115 . . . . . . 7 (𝐺:𝐵𝐶 → ((2nd𝑥) ∈ 𝐵 → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1512, 14syl 14 . . . . . 6 (𝜑 → ((2nd𝑥) ∈ 𝐵 → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1611, 15sylan9r 410 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) ≠ ∅ → (𝐺‘(2nd𝑥)) ∈ 𝐶))
179, 16biimtrrid 153 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → (¬ (1st𝑥) = ∅ → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1817imp 124 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ (1st𝑥) = ∅) → (𝐺‘(2nd𝑥)) ∈ 𝐶)
19 eldju1st 7137 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ ∨ (1st𝑥) = 1o))
20 1n0 6490 . . . . . . . 8 1o ≠ ∅
21 neeq1 2380 . . . . . . . 8 ((1st𝑥) = 1o → ((1st𝑥) ≠ ∅ ↔ 1o ≠ ∅))
2220, 21mpbiri 168 . . . . . . 7 ((1st𝑥) = 1o → (1st𝑥) ≠ ∅)
2322orim2i 762 . . . . . 6 (((1st𝑥) = ∅ ∨ (1st𝑥) = 1o) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2419, 23syl 14 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2524adantl 277 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
26 dcne 2378 . . . 4 (DECID (1st𝑥) = ∅ ↔ ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2725, 26sylibr 134 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → DECID (1st𝑥) = ∅)
288, 18, 27ifcldadc 3590 . 2 ((𝜑𝑥 ∈ (𝐴𝐵)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) ∈ 𝐶)
29 updjudhf.h . 2 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
3028, 29fmptd 5716 1 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  c0 3450  ifcif 3561  cmpt 4094  wf 5254  cfv 5258  1st c1st 6196  2nd c2nd 6197  1oc1o 6467  cdju 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  updjudhcoinlf  7146  updjudhcoinrg  7147  updjud  7148
  Copyright terms: Public domain W3C validator