ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhf GIF version

Theorem updjudhf 7140
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhf (𝜑𝐻:(𝐴𝐵)⟶𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem updjudhf
StepHypRef Expression
1 eldju2ndl 7133 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ (1st𝑥) = ∅) → (2nd𝑥) ∈ 𝐴)
21ex 115 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ → (2nd𝑥) ∈ 𝐴))
3 updjud.f . . . . . 6 (𝜑𝐹:𝐴𝐶)
4 ffvelcdm 5692 . . . . . . 7 ((𝐹:𝐴𝐶 ∧ (2nd𝑥) ∈ 𝐴) → (𝐹‘(2nd𝑥)) ∈ 𝐶)
54ex 115 . . . . . 6 (𝐹:𝐴𝐶 → ((2nd𝑥) ∈ 𝐴 → (𝐹‘(2nd𝑥)) ∈ 𝐶))
63, 5syl 14 . . . . 5 (𝜑 → ((2nd𝑥) ∈ 𝐴 → (𝐹‘(2nd𝑥)) ∈ 𝐶))
72, 6sylan9r 410 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) = ∅ → (𝐹‘(2nd𝑥)) ∈ 𝐶))
87imp 124 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (1st𝑥) = ∅) → (𝐹‘(2nd𝑥)) ∈ 𝐶)
9 df-ne 2365 . . . . 5 ((1st𝑥) ≠ ∅ ↔ ¬ (1st𝑥) = ∅)
10 eldju2ndr 7134 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ (1st𝑥) ≠ ∅) → (2nd𝑥) ∈ 𝐵)
1110ex 115 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) ≠ ∅ → (2nd𝑥) ∈ 𝐵))
12 updjud.g . . . . . . 7 (𝜑𝐺:𝐵𝐶)
13 ffvelcdm 5692 . . . . . . . 8 ((𝐺:𝐵𝐶 ∧ (2nd𝑥) ∈ 𝐵) → (𝐺‘(2nd𝑥)) ∈ 𝐶)
1413ex 115 . . . . . . 7 (𝐺:𝐵𝐶 → ((2nd𝑥) ∈ 𝐵 → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1512, 14syl 14 . . . . . 6 (𝜑 → ((2nd𝑥) ∈ 𝐵 → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1611, 15sylan9r 410 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) ≠ ∅ → (𝐺‘(2nd𝑥)) ∈ 𝐶))
179, 16biimtrrid 153 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → (¬ (1st𝑥) = ∅ → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1817imp 124 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ (1st𝑥) = ∅) → (𝐺‘(2nd𝑥)) ∈ 𝐶)
19 eldju1st 7132 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ ∨ (1st𝑥) = 1o))
20 1n0 6487 . . . . . . . 8 1o ≠ ∅
21 neeq1 2377 . . . . . . . 8 ((1st𝑥) = 1o → ((1st𝑥) ≠ ∅ ↔ 1o ≠ ∅))
2220, 21mpbiri 168 . . . . . . 7 ((1st𝑥) = 1o → (1st𝑥) ≠ ∅)
2322orim2i 762 . . . . . 6 (((1st𝑥) = ∅ ∨ (1st𝑥) = 1o) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2419, 23syl 14 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2524adantl 277 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
26 dcne 2375 . . . 4 (DECID (1st𝑥) = ∅ ↔ ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2725, 26sylibr 134 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → DECID (1st𝑥) = ∅)
288, 18, 27ifcldadc 3587 . 2 ((𝜑𝑥 ∈ (𝐴𝐵)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) ∈ 𝐶)
29 updjudhf.h . 2 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
3028, 29fmptd 5713 1 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  c0 3447  ifcif 3558  cmpt 4091  wf 5251  cfv 5255  1st c1st 6193  2nd c2nd 6194  1oc1o 6464  cdju 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109
This theorem is referenced by:  updjudhcoinlf  7141  updjudhcoinrg  7142  updjud  7143
  Copyright terms: Public domain W3C validator