Proof of Theorem updjudhf
Step | Hyp | Ref
| Expression |
1 | | eldju2ndl 7049 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) = ∅) →
(2nd ‘𝑥)
∈ 𝐴) |
2 | 1 | ex 114 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) = ∅ →
(2nd ‘𝑥)
∈ 𝐴)) |
3 | | updjud.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
4 | | ffvelrn 5629 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐴) → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶) |
5 | 4 | ex 114 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
6 | 3, 5 | syl 14 |
. . . . 5
⊢ (𝜑 → ((2nd
‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
7 | 2, 6 | sylan9r 408 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) = ∅ → (𝐹‘(2nd
‘𝑥)) ∈ 𝐶)) |
8 | 7 | imp 123 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ (1st ‘𝑥) = ∅) → (𝐹‘(2nd
‘𝑥)) ∈ 𝐶) |
9 | | df-ne 2341 |
. . . . 5
⊢
((1st ‘𝑥) ≠ ∅ ↔ ¬ (1st
‘𝑥) =
∅) |
10 | | eldju2ndr 7050 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) ≠ ∅) →
(2nd ‘𝑥)
∈ 𝐵) |
11 | 10 | ex 114 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) ≠ ∅ →
(2nd ‘𝑥)
∈ 𝐵)) |
12 | | updjud.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
13 | | ffvelrn 5629 |
. . . . . . . 8
⊢ ((𝐺:𝐵⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐵) → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶) |
14 | 13 | ex 114 |
. . . . . . 7
⊢ (𝐺:𝐵⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
15 | 12, 14 | syl 14 |
. . . . . 6
⊢ (𝜑 → ((2nd
‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
16 | 11, 15 | sylan9r 408 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) ≠ ∅ → (𝐺‘(2nd
‘𝑥)) ∈ 𝐶)) |
17 | 9, 16 | syl5bir 152 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → (¬ (1st
‘𝑥) = ∅ →
(𝐺‘(2nd
‘𝑥)) ∈ 𝐶)) |
18 | 17 | imp 123 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ ¬ (1st ‘𝑥) = ∅) → (𝐺‘(2nd
‘𝑥)) ∈ 𝐶) |
19 | | eldju1st 7048 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) = ∅ ∨ (1st
‘𝑥) =
1o)) |
20 | | 1n0 6411 |
. . . . . . . 8
⊢
1o ≠ ∅ |
21 | | neeq1 2353 |
. . . . . . . 8
⊢
((1st ‘𝑥) = 1o → ((1st
‘𝑥) ≠ ∅
↔ 1o ≠ ∅)) |
22 | 20, 21 | mpbiri 167 |
. . . . . . 7
⊢
((1st ‘𝑥) = 1o → (1st
‘𝑥) ≠
∅) |
23 | 22 | orim2i 756 |
. . . . . 6
⊢
(((1st ‘𝑥) = ∅ ∨ (1st ‘𝑥) = 1o) →
((1st ‘𝑥)
= ∅ ∨ (1st ‘𝑥) ≠ ∅)) |
24 | 19, 23 | syl 14 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) = ∅ ∨ (1st
‘𝑥) ≠
∅)) |
25 | 24 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) = ∅ ∨ (1st
‘𝑥) ≠
∅)) |
26 | | dcne 2351 |
. . . 4
⊢
(DECID (1st ‘𝑥) = ∅ ↔ ((1st
‘𝑥) = ∅ ∨
(1st ‘𝑥)
≠ ∅)) |
27 | 25, 26 | sylibr 133 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → DECID
(1st ‘𝑥) =
∅) |
28 | 8, 18, 27 | ifcldadc 3555 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) ∈ 𝐶) |
29 | | updjudhf.h |
. 2
⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) |
30 | 28, 29 | fmptd 5650 |
1
⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |