ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhf GIF version

Theorem updjudhf 7077
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhf (𝜑𝐻:(𝐴𝐵)⟶𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem updjudhf
StepHypRef Expression
1 eldju2ndl 7070 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ (1st𝑥) = ∅) → (2nd𝑥) ∈ 𝐴)
21ex 115 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ → (2nd𝑥) ∈ 𝐴))
3 updjud.f . . . . . 6 (𝜑𝐹:𝐴𝐶)
4 ffvelcdm 5649 . . . . . . 7 ((𝐹:𝐴𝐶 ∧ (2nd𝑥) ∈ 𝐴) → (𝐹‘(2nd𝑥)) ∈ 𝐶)
54ex 115 . . . . . 6 (𝐹:𝐴𝐶 → ((2nd𝑥) ∈ 𝐴 → (𝐹‘(2nd𝑥)) ∈ 𝐶))
63, 5syl 14 . . . . 5 (𝜑 → ((2nd𝑥) ∈ 𝐴 → (𝐹‘(2nd𝑥)) ∈ 𝐶))
72, 6sylan9r 410 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) = ∅ → (𝐹‘(2nd𝑥)) ∈ 𝐶))
87imp 124 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (1st𝑥) = ∅) → (𝐹‘(2nd𝑥)) ∈ 𝐶)
9 df-ne 2348 . . . . 5 ((1st𝑥) ≠ ∅ ↔ ¬ (1st𝑥) = ∅)
10 eldju2ndr 7071 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ (1st𝑥) ≠ ∅) → (2nd𝑥) ∈ 𝐵)
1110ex 115 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) ≠ ∅ → (2nd𝑥) ∈ 𝐵))
12 updjud.g . . . . . . 7 (𝜑𝐺:𝐵𝐶)
13 ffvelcdm 5649 . . . . . . . 8 ((𝐺:𝐵𝐶 ∧ (2nd𝑥) ∈ 𝐵) → (𝐺‘(2nd𝑥)) ∈ 𝐶)
1413ex 115 . . . . . . 7 (𝐺:𝐵𝐶 → ((2nd𝑥) ∈ 𝐵 → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1512, 14syl 14 . . . . . 6 (𝜑 → ((2nd𝑥) ∈ 𝐵 → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1611, 15sylan9r 410 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) ≠ ∅ → (𝐺‘(2nd𝑥)) ∈ 𝐶))
179, 16biimtrrid 153 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → (¬ (1st𝑥) = ∅ → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1817imp 124 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ (1st𝑥) = ∅) → (𝐺‘(2nd𝑥)) ∈ 𝐶)
19 eldju1st 7069 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ ∨ (1st𝑥) = 1o))
20 1n0 6432 . . . . . . . 8 1o ≠ ∅
21 neeq1 2360 . . . . . . . 8 ((1st𝑥) = 1o → ((1st𝑥) ≠ ∅ ↔ 1o ≠ ∅))
2220, 21mpbiri 168 . . . . . . 7 ((1st𝑥) = 1o → (1st𝑥) ≠ ∅)
2322orim2i 761 . . . . . 6 (((1st𝑥) = ∅ ∨ (1st𝑥) = 1o) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2419, 23syl 14 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2524adantl 277 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
26 dcne 2358 . . . 4 (DECID (1st𝑥) = ∅ ↔ ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2725, 26sylibr 134 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → DECID (1st𝑥) = ∅)
288, 18, 27ifcldadc 3563 . 2 ((𝜑𝑥 ∈ (𝐴𝐵)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) ∈ 𝐶)
29 updjudhf.h . 2 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
3028, 29fmptd 5670 1 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  c0 3422  ifcif 3534  cmpt 4064  wf 5212  cfv 5216  1st c1st 6138  2nd c2nd 6139  1oc1o 6409  cdju 7035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-1st 6140  df-2nd 6141  df-1o 6416  df-dju 7036  df-inl 7045  df-inr 7046
This theorem is referenced by:  updjudhcoinlf  7078  updjudhcoinrg  7079  updjud  7080
  Copyright terms: Public domain W3C validator