Proof of Theorem updjudhf
| Step | Hyp | Ref
 | Expression | 
| 1 |   | eldju2ndl 7138 | 
. . . . . 6
⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) = ∅) →
(2nd ‘𝑥)
∈ 𝐴) | 
| 2 | 1 | ex 115 | 
. . . . 5
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) = ∅ →
(2nd ‘𝑥)
∈ 𝐴)) | 
| 3 |   | updjud.f | 
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | 
| 4 |   | ffvelcdm 5695 | 
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐴) → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶) | 
| 5 | 4 | ex 115 | 
. . . . . 6
⊢ (𝐹:𝐴⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) | 
| 6 | 3, 5 | syl 14 | 
. . . . 5
⊢ (𝜑 → ((2nd
‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) | 
| 7 | 2, 6 | sylan9r 410 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) = ∅ → (𝐹‘(2nd
‘𝑥)) ∈ 𝐶)) | 
| 8 | 7 | imp 124 | 
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ (1st ‘𝑥) = ∅) → (𝐹‘(2nd
‘𝑥)) ∈ 𝐶) | 
| 9 |   | df-ne 2368 | 
. . . . 5
⊢
((1st ‘𝑥) ≠ ∅ ↔ ¬ (1st
‘𝑥) =
∅) | 
| 10 |   | eldju2ndr 7139 | 
. . . . . . 7
⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) ≠ ∅) →
(2nd ‘𝑥)
∈ 𝐵) | 
| 11 | 10 | ex 115 | 
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) ≠ ∅ →
(2nd ‘𝑥)
∈ 𝐵)) | 
| 12 |   | updjud.g | 
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | 
| 13 |   | ffvelcdm 5695 | 
. . . . . . . 8
⊢ ((𝐺:𝐵⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐵) → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶) | 
| 14 | 13 | ex 115 | 
. . . . . . 7
⊢ (𝐺:𝐵⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) | 
| 15 | 12, 14 | syl 14 | 
. . . . . 6
⊢ (𝜑 → ((2nd
‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) | 
| 16 | 11, 15 | sylan9r 410 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) ≠ ∅ → (𝐺‘(2nd
‘𝑥)) ∈ 𝐶)) | 
| 17 | 9, 16 | biimtrrid 153 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → (¬ (1st
‘𝑥) = ∅ →
(𝐺‘(2nd
‘𝑥)) ∈ 𝐶)) | 
| 18 | 17 | imp 124 | 
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ ¬ (1st ‘𝑥) = ∅) → (𝐺‘(2nd
‘𝑥)) ∈ 𝐶) | 
| 19 |   | eldju1st 7137 | 
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) = ∅ ∨ (1st
‘𝑥) =
1o)) | 
| 20 |   | 1n0 6490 | 
. . . . . . . 8
⊢
1o ≠ ∅ | 
| 21 |   | neeq1 2380 | 
. . . . . . . 8
⊢
((1st ‘𝑥) = 1o → ((1st
‘𝑥) ≠ ∅
↔ 1o ≠ ∅)) | 
| 22 | 20, 21 | mpbiri 168 | 
. . . . . . 7
⊢
((1st ‘𝑥) = 1o → (1st
‘𝑥) ≠
∅) | 
| 23 | 22 | orim2i 762 | 
. . . . . 6
⊢
(((1st ‘𝑥) = ∅ ∨ (1st ‘𝑥) = 1o) →
((1st ‘𝑥)
= ∅ ∨ (1st ‘𝑥) ≠ ∅)) | 
| 24 | 19, 23 | syl 14 | 
. . . . 5
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) = ∅ ∨ (1st
‘𝑥) ≠
∅)) | 
| 25 | 24 | adantl 277 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) = ∅ ∨ (1st
‘𝑥) ≠
∅)) | 
| 26 |   | dcne 2378 | 
. . . 4
⊢
(DECID (1st ‘𝑥) = ∅ ↔ ((1st
‘𝑥) = ∅ ∨
(1st ‘𝑥)
≠ ∅)) | 
| 27 | 25, 26 | sylibr 134 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → DECID
(1st ‘𝑥) =
∅) | 
| 28 | 8, 18, 27 | ifcldadc 3590 | 
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) ∈ 𝐶) | 
| 29 |   | updjudhf.h | 
. 2
⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) | 
| 30 | 28, 29 | fmptd 5716 | 
1
⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |