ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhf GIF version

Theorem updjudhf 7254
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhf (𝜑𝐻:(𝐴𝐵)⟶𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem updjudhf
StepHypRef Expression
1 eldju2ndl 7247 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ (1st𝑥) = ∅) → (2nd𝑥) ∈ 𝐴)
21ex 115 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ → (2nd𝑥) ∈ 𝐴))
3 updjud.f . . . . . 6 (𝜑𝐹:𝐴𝐶)
4 ffvelcdm 5770 . . . . . . 7 ((𝐹:𝐴𝐶 ∧ (2nd𝑥) ∈ 𝐴) → (𝐹‘(2nd𝑥)) ∈ 𝐶)
54ex 115 . . . . . 6 (𝐹:𝐴𝐶 → ((2nd𝑥) ∈ 𝐴 → (𝐹‘(2nd𝑥)) ∈ 𝐶))
63, 5syl 14 . . . . 5 (𝜑 → ((2nd𝑥) ∈ 𝐴 → (𝐹‘(2nd𝑥)) ∈ 𝐶))
72, 6sylan9r 410 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) = ∅ → (𝐹‘(2nd𝑥)) ∈ 𝐶))
87imp 124 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (1st𝑥) = ∅) → (𝐹‘(2nd𝑥)) ∈ 𝐶)
9 df-ne 2401 . . . . 5 ((1st𝑥) ≠ ∅ ↔ ¬ (1st𝑥) = ∅)
10 eldju2ndr 7248 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ (1st𝑥) ≠ ∅) → (2nd𝑥) ∈ 𝐵)
1110ex 115 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) ≠ ∅ → (2nd𝑥) ∈ 𝐵))
12 updjud.g . . . . . . 7 (𝜑𝐺:𝐵𝐶)
13 ffvelcdm 5770 . . . . . . . 8 ((𝐺:𝐵𝐶 ∧ (2nd𝑥) ∈ 𝐵) → (𝐺‘(2nd𝑥)) ∈ 𝐶)
1413ex 115 . . . . . . 7 (𝐺:𝐵𝐶 → ((2nd𝑥) ∈ 𝐵 → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1512, 14syl 14 . . . . . 6 (𝜑 → ((2nd𝑥) ∈ 𝐵 → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1611, 15sylan9r 410 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) ≠ ∅ → (𝐺‘(2nd𝑥)) ∈ 𝐶))
179, 16biimtrrid 153 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → (¬ (1st𝑥) = ∅ → (𝐺‘(2nd𝑥)) ∈ 𝐶))
1817imp 124 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ (1st𝑥) = ∅) → (𝐺‘(2nd𝑥)) ∈ 𝐶)
19 eldju1st 7246 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ ∨ (1st𝑥) = 1o))
20 1n0 6586 . . . . . . . 8 1o ≠ ∅
21 neeq1 2413 . . . . . . . 8 ((1st𝑥) = 1o → ((1st𝑥) ≠ ∅ ↔ 1o ≠ ∅))
2220, 21mpbiri 168 . . . . . . 7 ((1st𝑥) = 1o → (1st𝑥) ≠ ∅)
2322orim2i 766 . . . . . 6 (((1st𝑥) = ∅ ∨ (1st𝑥) = 1o) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2419, 23syl 14 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2524adantl 277 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
26 dcne 2411 . . . 4 (DECID (1st𝑥) = ∅ ↔ ((1st𝑥) = ∅ ∨ (1st𝑥) ≠ ∅))
2725, 26sylibr 134 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → DECID (1st𝑥) = ∅)
288, 18, 27ifcldadc 3632 . 2 ((𝜑𝑥 ∈ (𝐴𝐵)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) ∈ 𝐶)
29 updjudhf.h . 2 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
3028, 29fmptd 5791 1 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  c0 3491  ifcif 3602  cmpt 4145  wf 5314  cfv 5318  1st c1st 6290  2nd c2nd 6291  1oc1o 6561  cdju 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6292  df-2nd 6293  df-1o 6568  df-dju 7213  df-inl 7222  df-inr 7223
This theorem is referenced by:  updjudhcoinlf  7255  updjudhcoinrg  7256  updjud  7257
  Copyright terms: Public domain W3C validator