Step | Hyp | Ref
| Expression |
1 | | 1z 9238 |
. . 3
⊢ 1 ∈
ℤ |
2 | | nnuz 9522 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
3 | | 1zzd 9239 |
. . . . . . 7
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → 1 ∈ ℤ) |
4 | | climcl 11245 |
. . . . . . . . . . 11
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
5 | 4 | 3ad2ant1 1013 |
. . . . . . . . . 10
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → 𝐴 ∈ ℂ) |
6 | | climcl 11245 |
. . . . . . . . . . 11
⊢ (𝐹 ⇝ 𝐵 → 𝐵 ∈ ℂ) |
7 | 6 | 3ad2ant2 1014 |
. . . . . . . . . 10
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → 𝐵 ∈ ℂ) |
8 | 5, 7 | subcld 8230 |
. . . . . . . . 9
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → (𝐴 − 𝐵) ∈ ℂ) |
9 | | simp3 994 |
. . . . . . . . . 10
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → 𝐴 # 𝐵) |
10 | 5, 7, 9 | subap0d 8563 |
. . . . . . . . 9
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → (𝐴 − 𝐵) # 0) |
11 | 8, 10 | absrpclapd 11152 |
. . . . . . . 8
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → (abs‘(𝐴 − 𝐵)) ∈
ℝ+) |
12 | 11 | rphalfcld 9666 |
. . . . . . 7
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → ((abs‘(𝐴 − 𝐵)) / 2) ∈
ℝ+) |
13 | | eqidd 2171 |
. . . . . . 7
⊢ (((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
14 | | simp1 992 |
. . . . . . 7
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → 𝐹 ⇝ 𝐴) |
15 | 2, 3, 12, 13, 14 | climi 11250 |
. . . . . 6
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2))) |
16 | | simp2 993 |
. . . . . . 7
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → 𝐹 ⇝ 𝐵) |
17 | 2, 3, 12, 13, 16 | climi 11250 |
. . . . . 6
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))) |
18 | 2 | rexanuz2 10955 |
. . . . . 6
⊢
(∃𝑗 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2)))) |
19 | 15, 17, 18 | sylanbrc 415 |
. . . . 5
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2)))) |
20 | | nnz 9231 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
21 | | uzid 9501 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
22 | | elex2 2746 |
. . . . . . . . 9
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → ∃𝑘 𝑘 ∈ (ℤ≥‘𝑗)) |
23 | | r19.2m 3501 |
. . . . . . . . . 10
⊢
((∃𝑘 𝑘 ∈
(ℤ≥‘𝑗) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2)))) → ∃𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2)))) |
24 | 23 | ex 114 |
. . . . . . . . 9
⊢
(∃𝑘 𝑘 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))) → ∃𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))))) |
25 | 20, 21, 22, 24 | 4syl 18 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ →
(∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))) → ∃𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))))) |
26 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (𝐹‘𝑘) ∈ ℂ) |
27 | | simpll 524 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → 𝐴 ∈ ℂ) |
28 | 26, 27 | abssubd 11157 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(𝐴 − (𝐹‘𝑘)))) |
29 | 28 | breq1d 3999 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2) ↔ (abs‘(𝐴 − (𝐹‘𝑘))) < ((abs‘(𝐴 − 𝐵)) / 2))) |
30 | | simplr 525 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → 𝐵 ∈ ℂ) |
31 | | subcl 8118 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
32 | 31 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
33 | 32 | abscld 11145 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
34 | | abs3lem 11075 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ)) →
(((abs‘(𝐴 −
(𝐹‘𝑘))) < ((abs‘(𝐴 − 𝐵)) / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2)) → (abs‘(𝐴 − 𝐵)) < (abs‘(𝐴 − 𝐵)))) |
35 | 27, 30, 26, 33, 34 | syl22anc 1234 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹‘𝑘))) < ((abs‘(𝐴 − 𝐵)) / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2)) → (abs‘(𝐴 − 𝐵)) < (abs‘(𝐴 − 𝐵)))) |
36 | 33 | ltnrd 8031 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ¬
(abs‘(𝐴 − 𝐵)) < (abs‘(𝐴 − 𝐵))) |
37 | 36 | pm2.21d 614 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘(𝐴 − 𝐵)) < (abs‘(𝐴 − 𝐵)) → ¬ 1 ∈
ℤ)) |
38 | 35, 37 | syld 45 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹‘𝑘))) < ((abs‘(𝐴 − 𝐵)) / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2)) → ¬ 1 ∈
ℤ)) |
39 | 38 | expd 256 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘(𝐴 − (𝐹‘𝑘))) < ((abs‘(𝐴 − 𝐵)) / 2) → ((abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2) → ¬ 1 ∈
ℤ))) |
40 | 29, 39 | sylbid 149 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2) → ((abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2) → ¬ 1 ∈
ℤ))) |
41 | 40 | impr 377 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2))) → ((abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2) → ¬ 1 ∈
ℤ)) |
42 | 41 | adantld 276 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2))) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2)) → ¬ 1 ∈
ℤ)) |
43 | 42 | expimpd 361 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((((𝐹‘𝑘) ∈ ℂ ∧
(abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))) → ¬ 1 ∈
ℤ)) |
44 | 43 | rexlimdvw 2591 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(∃𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))) → ¬ 1 ∈
ℤ)) |
45 | 25, 44 | sylan9r 408 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑗 ∈ ℕ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))) → ¬ 1 ∈
ℤ)) |
46 | 45 | rexlimdva 2587 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))) → ¬ 1 ∈
ℤ)) |
47 | 5, 7, 46 | syl2anc 409 |
. . . . 5
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < ((abs‘(𝐴 − 𝐵)) / 2)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐵)) < ((abs‘(𝐴 − 𝐵)) / 2))) → ¬ 1 ∈
ℤ)) |
48 | 19, 47 | mpd 13 |
. . . 4
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 # 𝐵) → ¬ 1 ∈
ℤ) |
49 | 48 | 3expia 1200 |
. . 3
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵) → (𝐴 # 𝐵 → ¬ 1 ∈
ℤ)) |
50 | 1, 49 | mt2i 639 |
. 2
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵) → ¬ 𝐴 # 𝐵) |
51 | | apti 8541 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
52 | 4, 6, 51 | syl2an 287 |
. 2
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
53 | 50, 52 | mpbird 166 |
1
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵) → 𝐴 = 𝐵) |