| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccsupr | GIF version | ||
| Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccsupr | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre 10092 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 2 | sstr 3205 | . . . . 5 ⊢ ((𝑆 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ) → 𝑆 ⊆ ℝ) | |
| 3 | 2 | ancoms 268 | . . . 4 ⊢ (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ) |
| 4 | 1, 3 | sylan 283 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ) |
| 5 | 4 | 3adant3 1020 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → 𝑆 ⊆ ℝ) |
| 6 | ne0i 3471 | . . 3 ⊢ (𝐶 ∈ 𝑆 → 𝑆 ≠ ∅) | |
| 7 | 6 | 3ad2ant3 1023 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → 𝑆 ≠ ∅) |
| 8 | simplr 528 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) | |
| 9 | ssel 3191 | . . . . . . . 8 ⊢ (𝑆 ⊆ (𝐴[,]𝐵) → (𝑦 ∈ 𝑆 → 𝑦 ∈ (𝐴[,]𝐵))) | |
| 10 | elicc2 10075 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) | |
| 11 | 10 | biimpd 144 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
| 12 | 9, 11 | sylan9r 410 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → (𝑦 ∈ 𝑆 → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
| 13 | 12 | imp 124 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦 ∈ 𝑆) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵)) |
| 14 | 13 | simp3d 1014 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦 ∈ 𝑆) → 𝑦 ≤ 𝐵) |
| 15 | 14 | ralrimiva 2580 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵) |
| 16 | breq2 4054 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝐵)) | |
| 17 | 16 | ralbidv 2507 | . . . . 5 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵)) |
| 18 | 17 | rspcev 2881 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
| 19 | 8, 15, 18 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
| 20 | 19 | 3adant3 1020 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
| 21 | 5, 7, 20 | 3jca 1180 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∀wral 2485 ∃wrex 2486 ⊆ wss 3170 ∅c0 3464 class class class wbr 4050 (class class class)co 5956 ℝcr 7939 ≤ cle 8123 [,]cicc 10028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-po 4350 df-iso 4351 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-icc 10032 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |