![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iccsupr | GIF version |
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.) |
Ref | Expression |
---|---|
iccsupr | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssre 9434 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
2 | sstr 3034 | . . . . 5 ⊢ ((𝑆 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ) → 𝑆 ⊆ ℝ) | |
3 | 2 | ancoms 265 | . . . 4 ⊢ (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ) |
4 | 1, 3 | sylan 278 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ) |
5 | 4 | 3adant3 964 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → 𝑆 ⊆ ℝ) |
6 | ne0i 3293 | . . 3 ⊢ (𝐶 ∈ 𝑆 → 𝑆 ≠ ∅) | |
7 | 6 | 3ad2ant3 967 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → 𝑆 ≠ ∅) |
8 | simplr 498 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) | |
9 | ssel 3020 | . . . . . . . 8 ⊢ (𝑆 ⊆ (𝐴[,]𝐵) → (𝑦 ∈ 𝑆 → 𝑦 ∈ (𝐴[,]𝐵))) | |
10 | elicc2 9417 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) | |
11 | 10 | biimpd 143 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
12 | 9, 11 | sylan9r 403 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → (𝑦 ∈ 𝑆 → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
13 | 12 | imp 123 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦 ∈ 𝑆) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵)) |
14 | 13 | simp3d 958 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦 ∈ 𝑆) → 𝑦 ≤ 𝐵) |
15 | 14 | ralrimiva 2447 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵) |
16 | breq2 3855 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝐵)) | |
17 | 16 | ralbidv 2381 | . . . . 5 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵)) |
18 | 17 | rspcev 2723 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
19 | 8, 15, 18 | syl2anc 404 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
20 | 19 | 3adant3 964 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
21 | 5, 7, 20 | 3jca 1124 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 925 = wceq 1290 ∈ wcel 1439 ≠ wne 2256 ∀wral 2360 ∃wrex 2361 ⊆ wss 3000 ∅c0 3287 class class class wbr 3851 (class class class)co 5666 ℝcr 7410 ≤ cle 7584 [,]cicc 9370 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-id 4129 df-po 4132 df-iso 4133 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-iota 4993 df-fun 5030 df-fv 5036 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-icc 9374 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |