| Step | Hyp | Ref
| Expression |
| 1 | | tgcn.1 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | tgcn.4 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 3 | | iscn 14433 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 4 | 1, 2, 3 | syl2anc 411 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 5 | | tgcn.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) |
| 6 | | topontop 14250 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 7 | 2, 6 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) |
| 8 | 5, 7 | eqeltrrd 2274 |
. . . . . . . 8
⊢ (𝜑 → (topGen‘𝐵) ∈ Top) |
| 9 | | tgclb 14301 |
. . . . . . . 8
⊢ (𝐵 ∈ TopBases ↔
(topGen‘𝐵) ∈
Top) |
| 10 | 8, 9 | sylibr 134 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ TopBases) |
| 11 | | bastg 14297 |
. . . . . . 7
⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) |
| 12 | 10, 11 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ (topGen‘𝐵)) |
| 13 | 12, 5 | sseqtrrd 3222 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝐾) |
| 14 | | ssralv 3247 |
. . . . 5
⊢ (𝐵 ⊆ 𝐾 → (∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 15 | 13, 14 | syl 14 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 16 | 5 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ 𝑥 ∈ (topGen‘𝐵))) |
| 17 | | eltg3 14293 |
. . . . . . . . . 10
⊢ (𝐵 ∈ TopBases → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧))) |
| 18 | 10, 17 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧))) |
| 19 | 16, 18 | bitrd 188 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧))) |
| 20 | | ssralv 3247 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 21 | | topontop 14250 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 22 | 1, 21 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Top) |
| 23 | | iunopn 14238 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽) → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽) |
| 24 | 23 | ex 115 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top →
(∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 25 | 22, 24 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 26 | 20, 25 | sylan9r 410 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 27 | | imaeq2 5005 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ∪
𝑧 → (◡𝐹 “ 𝑥) = (◡𝐹 “ ∪ 𝑧)) |
| 28 | | imauni 5808 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪ 𝑧) = ∪ 𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) |
| 29 | 27, 28 | eqtrdi 2245 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∪
𝑧 → (◡𝐹 “ 𝑥) = ∪ 𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦)) |
| 30 | 29 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∪
𝑧 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 31 | 30 | imbi2d 230 |
. . . . . . . . . . 11
⊢ (𝑥 = ∪
𝑧 → ((∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽) ↔ (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 32 | 26, 31 | syl5ibrcom 157 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (𝑥 = ∪ 𝑧 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 33 | 32 | expimpd 363 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 34 | 33 | exlimdv 1833 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 35 | 19, 34 | sylbid 150 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐾 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 36 | 35 | imp 124 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 37 | 36 | ralrimdva 2577 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 38 | | imaeq2 5005 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑦)) |
| 39 | 38 | eleq1d 2265 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 40 | 39 | cbvralv 2729 |
. . . . 5
⊢
(∀𝑥 ∈
𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) |
| 41 | 37, 40 | imbitrdi 161 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 42 | 15, 41 | impbid 129 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 43 | 42 | anbi2d 464 |
. 2
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 44 | 4, 43 | bitrd 188 |
1
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |