ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgcn GIF version

Theorem tgcn 14795
Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
tgcn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 iscn 14784 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
41, 2, 3syl2anc 411 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
5 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
6 topontop 14601 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
72, 6syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
85, 7eqeltrrd 2285 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
9 tgclb 14652 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
108, 9sylibr 134 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
11 bastg 14648 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1210, 11syl 14 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1312, 5sseqtrrd 3240 . . . . 5 (𝜑𝐵𝐾)
14 ssralv 3265 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
1513, 14syl 14 . . . 4 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
165eleq2d 2277 . . . . . . . . 9 (𝜑 → (𝑥𝐾𝑥 ∈ (topGen‘𝐵)))
17 eltg3 14644 . . . . . . . . . 10 (𝐵 ∈ TopBases → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1810, 17syl 14 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1916, 18bitrd 188 . . . . . . . 8 (𝜑 → (𝑥𝐾 ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
20 ssralv 3265 . . . . . . . . . . . 12 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
21 topontop 14601 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
221, 21syl 14 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
23 iunopn 14589 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
2423ex 115 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2522, 24syl 14 . . . . . . . . . . . 12 (𝜑 → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2620, 25sylan9r 410 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
27 imaeq2 5037 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹 𝑧))
28 imauni 5853 . . . . . . . . . . . . . 14 (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦)
2927, 28eqtrdi 2256 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
3029eleq1d 2276 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3130imbi2d 230 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽) ↔ (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)))
3226, 31syl5ibrcom 157 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3332expimpd 363 . . . . . . . . 9 (𝜑 → ((𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3433exlimdv 1843 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3519, 34sylbid 150 . . . . . . 7 (𝜑 → (𝑥𝐾 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3635imp 124 . . . . . 6 ((𝜑𝑥𝐾) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))
3736ralrimdva 2588 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
38 imaeq2 5037 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
3938eleq1d 2276 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ 𝐽 ↔ (𝐹𝑦) ∈ 𝐽))
4039cbvralv 2742 . . . . 5 (∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽 ↔ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)
4137, 40imbitrdi 161 . . . 4 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
4215, 41impbid 129 . . 3 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4342anbi2d 464 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
444, 43bitrd 188 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2178  wral 2486  wss 3174   cuni 3864   ciun 3941  ccnv 4692  cima 4696  wf 5286  cfv 5290  (class class class)co 5967  topGenctg 13201  Topctop 14584  TopOnctopon 14597  TopBasesctb 14629   Cn ccn 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-topgen 13207  df-top 14585  df-topon 14598  df-bases 14630  df-cn 14775
This theorem is referenced by:  txcnmpt  14860
  Copyright terms: Public domain W3C validator