Step | Hyp | Ref
| Expression |
1 | | tgcn.1 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | tgcn.4 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
3 | | iscn 12991 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
4 | 1, 2, 3 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
5 | | tgcn.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) |
6 | | topontop 12806 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
7 | 2, 6 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) |
8 | 5, 7 | eqeltrrd 2248 |
. . . . . . . 8
⊢ (𝜑 → (topGen‘𝐵) ∈ Top) |
9 | | tgclb 12859 |
. . . . . . . 8
⊢ (𝐵 ∈ TopBases ↔
(topGen‘𝐵) ∈
Top) |
10 | 8, 9 | sylibr 133 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ TopBases) |
11 | | bastg 12855 |
. . . . . . 7
⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) |
12 | 10, 11 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ (topGen‘𝐵)) |
13 | 12, 5 | sseqtrrd 3186 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝐾) |
14 | | ssralv 3211 |
. . . . 5
⊢ (𝐵 ⊆ 𝐾 → (∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
15 | 13, 14 | syl 14 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
16 | 5 | eleq2d 2240 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ 𝑥 ∈ (topGen‘𝐵))) |
17 | | eltg3 12851 |
. . . . . . . . . 10
⊢ (𝐵 ∈ TopBases → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧))) |
18 | 10, 17 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧))) |
19 | 16, 18 | bitrd 187 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧))) |
20 | | ssralv 3211 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
21 | | topontop 12806 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
22 | 1, 21 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Top) |
23 | | iunopn 12794 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽) → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽) |
24 | 23 | ex 114 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top →
(∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
25 | 22, 24 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∀𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
26 | 20, 25 | sylan9r 408 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
27 | | imaeq2 4949 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ∪
𝑧 → (◡𝐹 “ 𝑥) = (◡𝐹 “ ∪ 𝑧)) |
28 | | imauni 5740 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪ 𝑧) = ∪ 𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) |
29 | 27, 28 | eqtrdi 2219 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∪
𝑧 → (◡𝐹 “ 𝑥) = ∪ 𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦)) |
30 | 29 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∪
𝑧 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
31 | 30 | imbi2d 229 |
. . . . . . . . . . 11
⊢ (𝑥 = ∪
𝑧 → ((∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽) ↔ (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∪
𝑦 ∈ 𝑧 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
32 | 26, 31 | syl5ibrcom 156 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (𝑥 = ∪ 𝑧 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
33 | 32 | expimpd 361 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
34 | 33 | exlimdv 1812 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
35 | 19, 34 | sylbid 149 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐾 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
36 | 35 | imp 123 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → (◡𝐹 “ 𝑥) ∈ 𝐽)) |
37 | 36 | ralrimdva 2550 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
38 | | imaeq2 4949 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑦)) |
39 | 38 | eleq1d 2239 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝑦) ∈ 𝐽)) |
40 | 39 | cbvralv 2696 |
. . . . 5
⊢
(∀𝑥 ∈
𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) |
41 | 37, 40 | syl6ib 160 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
42 | 15, 41 | impbid 128 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
43 | 42 | anbi2d 461 |
. 2
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
44 | 4, 43 | bitrd 187 |
1
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |