ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpcdl GIF version

Theorem genpcdl 7481
Description: Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcdl.2 ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))
Assertion
Ref Expression
genpcdl ((𝐴P𝐵P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑓,𝐹,𝑔,
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpcdl
StepHypRef Expression
1 ltrelnq 7327 . . . . . . 7 <Q ⊆ (Q × Q)
21brel 4663 . . . . . 6 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
32simpld 111 . . . . 5 (𝑥 <Q 𝑓𝑥Q)
4 genpelvl.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
5 genpelvl.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelvl 7474 . . . . . . . 8 ((𝐴P𝐵P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)))
76adantr 274 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)))
8 breq2 3993 . . . . . . . . . . . . 13 (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 <Q (𝑔𝐺)))
98biimpd 143 . . . . . . . . . . . 12 (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 <Q (𝑔𝐺)))
10 genpcdl.2 . . . . . . . . . . . 12 ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))
119, 10sylan9r 408 . . . . . . . . . . 11 (((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) ∧ 𝑓 = (𝑔𝐺)) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))
1211exp31 362 . . . . . . . . . 10 (((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))))
1312an4s 583 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑔 ∈ (1st𝐴) ∧ ∈ (1st𝐵))) → (𝑥Q → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))))
1413impancom 258 . . . . . . . 8 (((𝐴P𝐵P) ∧ 𝑥Q) → ((𝑔 ∈ (1st𝐴) ∧ ∈ (1st𝐵)) → (𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))))
1514rexlimdvv 2594 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑥Q) → (∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
167, 15sylbid 149 . . . . . 6 (((𝐴P𝐵P) ∧ 𝑥Q) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
1716ex 114 . . . . 5 ((𝐴P𝐵P) → (𝑥Q → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))))
183, 17syl5 32 . . . 4 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))))
1918com34 83 . . 3 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))))
2019pm2.43d 50 . 2 ((𝐴P𝐵P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
2120com23 78 1 ((𝐴P𝐵P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wrex 2449  {crab 2452  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  cmpo 5855  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   <Q cltq 7247  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-qs 6519  df-ni 7266  df-nqqs 7310  df-ltnqqs 7315  df-inp 7428
This theorem is referenced by:  genprndl  7483
  Copyright terms: Public domain W3C validator