![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > genpcdl | GIF version |
Description: Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.) |
Ref | Expression |
---|---|
genpelvl.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) |
genpelvl.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
genpcdl.2 | ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) |
Ref | Expression |
---|---|
genpcdl | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7427 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4712 | . . . . . 6 ⊢ (𝑥 <Q 𝑓 → (𝑥 ∈ Q ∧ 𝑓 ∈ Q)) |
3 | 2 | simpld 112 | . . . . 5 ⊢ (𝑥 <Q 𝑓 → 𝑥 ∈ Q) |
4 | genpelvl.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) | |
5 | genpelvl.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
6 | 4, 5 | genpelvl 7574 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝑓 = (𝑔𝐺ℎ))) |
7 | 6 | adantr 276 | . . . . . . 7 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝑓 = (𝑔𝐺ℎ))) |
8 | breq2 4034 | . . . . . . . . . . . . 13 ⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 ↔ 𝑥 <Q (𝑔𝐺ℎ))) | |
9 | 8 | biimpd 144 | . . . . . . . . . . . 12 ⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 <Q (𝑔𝐺ℎ))) |
10 | genpcdl.2 | . . . . . . . . . . . 12 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) | |
11 | 9, 10 | sylan9r 410 | . . . . . . . . . . 11 ⊢ (((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) ∧ 𝑓 = (𝑔𝐺ℎ)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) |
12 | 11 | exp31 364 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) → (𝑥 ∈ Q → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
13 | 12 | an4s 588 | . . . . . . . . 9 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑔 ∈ (1st ‘𝐴) ∧ ℎ ∈ (1st ‘𝐵))) → (𝑥 ∈ Q → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
14 | 13 | impancom 260 | . . . . . . . 8 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → ((𝑔 ∈ (1st ‘𝐴) ∧ ℎ ∈ (1st ‘𝐵)) → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
15 | 14 | rexlimdvv 2618 | . . . . . . 7 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
16 | 7, 15 | sylbid 150 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
17 | 16 | ex 115 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 ∈ Q → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
18 | 3, 17 | syl5 32 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
19 | 18 | com34 83 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
20 | 19 | pm2.43d 50 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
21 | 20 | com23 78 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 {crab 2476 〈cop 3622 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 1st c1st 6193 2nd c2nd 6194 Qcnq 7342 <Q cltq 7347 Pcnp 7353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-qs 6595 df-ni 7366 df-nqqs 7410 df-ltnqqs 7415 df-inp 7528 |
This theorem is referenced by: genprndl 7583 |
Copyright terms: Public domain | W3C validator |