Proof of Theorem genpcdl
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltrelnq 7432 | 
. . . . . . 7
⊢ 
<Q ⊆ (Q ×
Q) | 
| 2 | 1 | brel 4715 | 
. . . . . 6
⊢ (𝑥 <Q
𝑓 → (𝑥 ∈ Q ∧
𝑓 ∈
Q)) | 
| 3 | 2 | simpld 112 | 
. . . . 5
⊢ (𝑥 <Q
𝑓 → 𝑥 ∈ Q) | 
| 4 |   | genpelvl.1 | 
. . . . . . . . 9
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣
∃𝑦 ∈
Q ∃𝑧
∈ Q (𝑦
∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q
∃𝑧 ∈
Q (𝑦 ∈
(2nd ‘𝑤)
∧ 𝑧 ∈
(2nd ‘𝑣)
∧ 𝑥 = (𝑦𝐺𝑧))}〉) | 
| 5 |   | genpelvl.2 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦𝐺𝑧) ∈ Q) | 
| 6 | 4, 5 | genpelvl 7579 | 
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑓 ∈
(1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝑓 = (𝑔𝐺ℎ))) | 
| 7 | 6 | adantr 276 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑥 ∈
Q) → (𝑓
∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝑓 = (𝑔𝐺ℎ))) | 
| 8 |   | breq2 4037 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 ↔ 𝑥 <Q (𝑔𝐺ℎ))) | 
| 9 | 8 | biimpd 144 | 
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 <Q (𝑔𝐺ℎ))) | 
| 10 |   | genpcdl.2 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝑔 ∈ (1st
‘𝐴)) ∧ (𝐵 ∈ P ∧
ℎ ∈ (1st
‘𝐵))) ∧ 𝑥 ∈ Q) →
(𝑥
<Q (𝑔𝐺ℎ) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) | 
| 11 | 9, 10 | sylan9r 410 | 
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
P ∧ 𝑔
∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st
‘𝐵))) ∧ 𝑥 ∈ Q) ∧
𝑓 = (𝑔𝐺ℎ)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) | 
| 12 | 11 | exp31 364 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝑔 ∈ (1st
‘𝐴)) ∧ (𝐵 ∈ P ∧
ℎ ∈ (1st
‘𝐵))) → (𝑥 ∈ Q →
(𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) | 
| 13 | 12 | an4s 588 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑔 ∈
(1st ‘𝐴)
∧ ℎ ∈
(1st ‘𝐵)))
→ (𝑥 ∈
Q → (𝑓 =
(𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) | 
| 14 | 13 | impancom 260 | 
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑥 ∈
Q) → ((𝑔
∈ (1st ‘𝐴) ∧ ℎ ∈ (1st ‘𝐵)) → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) | 
| 15 | 14 | rexlimdvv 2621 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑥 ∈
Q) → (∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) | 
| 16 | 7, 15 | sylbid 150 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑥 ∈
Q) → (𝑓
∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) | 
| 17 | 16 | ex 115 | 
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑥 ∈
Q → (𝑓
∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) | 
| 18 | 3, 17 | syl5 32 | 
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑥
<Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) | 
| 19 | 18 | com34 83 | 
. . 3
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑥
<Q 𝑓 → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) | 
| 20 | 19 | pm2.43d 50 | 
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑥
<Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) | 
| 21 | 20 | com23 78 | 
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑓 ∈
(1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |