![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > genpcdl | GIF version |
Description: Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.) |
Ref | Expression |
---|---|
genpelvl.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) |
genpelvl.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
genpcdl.2 | ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) |
Ref | Expression |
---|---|
genpcdl | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 6987 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4505 | . . . . . 6 ⊢ (𝑥 <Q 𝑓 → (𝑥 ∈ Q ∧ 𝑓 ∈ Q)) |
3 | 2 | simpld 111 | . . . . 5 ⊢ (𝑥 <Q 𝑓 → 𝑥 ∈ Q) |
4 | genpelvl.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) | |
5 | genpelvl.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
6 | 4, 5 | genpelvl 7134 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝑓 = (𝑔𝐺ℎ))) |
7 | 6 | adantr 271 | . . . . . . 7 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝑓 = (𝑔𝐺ℎ))) |
8 | breq2 3857 | . . . . . . . . . . . . 13 ⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 ↔ 𝑥 <Q (𝑔𝐺ℎ))) | |
9 | 8 | biimpd 143 | . . . . . . . . . . . 12 ⊢ (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 <Q (𝑔𝐺ℎ))) |
10 | genpcdl.2 | . . . . . . . . . . . 12 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) | |
11 | 9, 10 | sylan9r 403 | . . . . . . . . . . 11 ⊢ (((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) ∧ 𝑓 = (𝑔𝐺ℎ)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) |
12 | 11 | exp31 357 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) → (𝑥 ∈ Q → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
13 | 12 | an4s 556 | . . . . . . . . 9 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑔 ∈ (1st ‘𝐴) ∧ ℎ ∈ (1st ‘𝐵))) → (𝑥 ∈ Q → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
14 | 13 | impancom 257 | . . . . . . . 8 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → ((𝑔 ∈ (1st ‘𝐴) ∧ ℎ ∈ (1st ‘𝐵)) → (𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
15 | 14 | rexlimdvv 2498 | . . . . . . 7 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝑓 = (𝑔𝐺ℎ) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
16 | 7, 15 | sylbid 149 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝑥 ∈ Q) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
17 | 16 | ex 114 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 ∈ Q → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
18 | 3, 17 | syl5 32 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
19 | 18 | com34 83 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))) |
20 | 19 | pm2.43d 50 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑥 <Q 𝑓 → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
21 | 20 | com23 78 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 925 = wceq 1290 ∈ wcel 1439 ∃wrex 2361 {crab 2364 〈cop 3455 class class class wbr 3853 ‘cfv 5030 (class class class)co 5668 ↦ cmpt2 5670 1st c1st 5925 2nd c2nd 5926 Qcnq 6902 <Q cltq 6907 Pcnp 6913 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3962 ax-sep 3965 ax-pow 4017 ax-pr 4047 ax-un 4271 ax-setind 4368 ax-iinf 4418 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2624 df-sbc 2844 df-csb 2937 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-int 3697 df-iun 3740 df-br 3854 df-opab 3908 df-mpt 3909 df-id 4131 df-iom 4421 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-res 4466 df-ima 4467 df-iota 4995 df-fun 5032 df-fn 5033 df-f 5034 df-f1 5035 df-fo 5036 df-f1o 5037 df-fv 5038 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-1st 5927 df-2nd 5928 df-qs 6314 df-ni 6926 df-nqqs 6970 df-ltnqqs 6975 df-inp 7088 |
This theorem is referenced by: genprndl 7143 |
Copyright terms: Public domain | W3C validator |