ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsubel GIF version

Theorem fzsubel 10252
Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
Assertion
Ref Expression
fzsubel (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))

Proof of Theorem fzsubel
StepHypRef Expression
1 znegcl 9473 . . 3 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
2 fzaddel 10251 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ -𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))))
31, 2sylanr2 405 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))))
4 zcn 9447 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
5 zcn 9447 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
64, 5anim12i 338 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7 zcn 9447 . . . 4 (𝐽 ∈ ℤ → 𝐽 ∈ ℂ)
8 zcn 9447 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
97, 8anim12i 338 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ))
10 negsub 8390 . . . . 5 ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 + -𝐾) = (𝐽𝐾))
1110adantl 277 . . . 4 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → (𝐽 + -𝐾) = (𝐽𝐾))
12 negsub 8390 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + -𝐾) = (𝑀𝐾))
13 negsub 8390 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 + -𝐾) = (𝑁𝐾))
1412, 13oveqan12d 6019 . . . . . 6 (((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
1514anandirs 595 . . . . 5 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
1615adantrl 478 . . . 4 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
1711, 16eleq12d 2300 . . 3 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))
186, 9, 17syl2an 289 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))
193, 18bitrd 188 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993   + caddc 7998  cmin 8313  -cneg 8314  cz 9442  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-fz 10201
This theorem is referenced by:  elfzp1b  10289  elfzm1b  10290  fisum0diag2  11953
  Copyright terms: Public domain W3C validator