Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsubel GIF version

Theorem fzsubel 9368
 Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
Assertion
Ref Expression
fzsubel (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))

Proof of Theorem fzsubel
StepHypRef Expression
1 znegcl 8677 . . 3 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
2 fzaddel 9367 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ -𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))))
31, 2sylanr2 397 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))))
4 zcn 8651 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
5 zcn 8651 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
64, 5anim12i 331 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7 zcn 8651 . . . 4 (𝐽 ∈ ℤ → 𝐽 ∈ ℂ)
8 zcn 8651 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
97, 8anim12i 331 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ))
10 negsub 7633 . . . . 5 ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 + -𝐾) = (𝐽𝐾))
1110adantl 271 . . . 4 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → (𝐽 + -𝐾) = (𝐽𝐾))
12 negsub 7633 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + -𝐾) = (𝑀𝐾))
13 negsub 7633 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 + -𝐾) = (𝑁𝐾))
1412, 13oveqan12d 5610 . . . . . 6 (((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
1514anandirs 558 . . . . 5 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
1615adantrl 462 . . . 4 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
1711, 16eleq12d 2153 . . 3 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))
186, 9, 17syl2an 283 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))
193, 18bitrd 186 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   = wceq 1285   ∈ wcel 1434  (class class class)co 5591  ℂcc 7251   + caddc 7256   − cmin 7556  -cneg 7557  ℤcz 8646  ...cfz 9319 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-addcom 7348  ax-addass 7350  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-0id 7356  ax-rnegex 7357  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-ltadd 7364 This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-inn 8317  df-n0 8566  df-z 8647  df-fz 9320 This theorem is referenced by:  elfzp1b  9404  elfzm1b  9405
 Copyright terms: Public domain W3C validator