| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzsubel | GIF version | ||
| Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
| Ref | Expression |
|---|---|
| fzsubel | ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl 9403 | . . 3 ⊢ (𝐾 ∈ ℤ → -𝐾 ∈ ℤ) | |
| 2 | fzaddel 10181 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ -𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)))) | |
| 3 | 1, 2 | sylanr2 405 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)))) |
| 4 | zcn 9377 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 5 | zcn 9377 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 6 | 4, 5 | anim12i 338 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 7 | zcn 9377 | . . . 4 ⊢ (𝐽 ∈ ℤ → 𝐽 ∈ ℂ) | |
| 8 | zcn 9377 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 9 | 7, 8 | anim12i 338 | . . 3 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) |
| 10 | negsub 8320 | . . . . 5 ⊢ ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 + -𝐾) = (𝐽 − 𝐾)) | |
| 11 | 10 | adantl 277 | . . . 4 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → (𝐽 + -𝐾) = (𝐽 − 𝐾)) |
| 12 | negsub 8320 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + -𝐾) = (𝑀 − 𝐾)) | |
| 13 | negsub 8320 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 + -𝐾) = (𝑁 − 𝐾)) | |
| 14 | 12, 13 | oveqan12d 5963 | . . . . . 6 ⊢ (((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
| 15 | 14 | anandirs 593 | . . . . 5 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
| 16 | 15 | adantrl 478 | . . . 4 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
| 17 | 11, 16 | eleq12d 2276 | . . 3 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
| 18 | 6, 9, 17 | syl2an 289 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + -𝐾) ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾)) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
| 19 | 3, 18 | bitrd 188 | 1 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 (class class class)co 5944 ℂcc 7923 + caddc 7928 − cmin 8243 -cneg 8244 ℤcz 9372 ...cfz 10130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-fz 10131 |
| This theorem is referenced by: elfzp1b 10219 elfzm1b 10220 fisum0diag2 11758 |
| Copyright terms: Public domain | W3C validator |