ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndconst GIF version

Theorem 2ndconst 6280
Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
2ndconst (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)

Proof of Theorem 2ndconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3740 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
2 fo2ndresm 6220 . . 3 (∃𝑥 𝑥 ∈ {𝐴} → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
31, 2syl 14 . 2 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
4 moeq 2939 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝐴, 𝑦
54moani 2115 . . . . 5 ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)
6 vex 2766 . . . . . . . 8 𝑦 ∈ V
76brres 4952 . . . . . . 7 (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
8 fo2nd 6216 . . . . . . . . . . 11 2nd :V–onto→V
9 fofn 5482 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 2nd Fn V
11 vex 2766 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 5601 . . . . . . . . . 10 ((2nd Fn V ∧ 𝑥 ∈ V) → ((2nd𝑥) = 𝑦𝑥2nd 𝑦))
1310, 11, 12mp2an 426 . . . . . . . . 9 ((2nd𝑥) = 𝑦𝑥2nd 𝑦)
1413anbi1i 458 . . . . . . . 8 (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
15 elxp7 6228 . . . . . . . . . . 11 (𝑥 ∈ ({𝐴} × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)))
16 eleq1 2259 . . . . . . . . . . . . . . 15 ((2nd𝑥) = 𝑦 → ((2nd𝑥) ∈ 𝐵𝑦𝐵))
1716biimpa 296 . . . . . . . . . . . . . 14 (((2nd𝑥) = 𝑦 ∧ (2nd𝑥) ∈ 𝐵) → 𝑦𝐵)
1817adantrl 478 . . . . . . . . . . . . 13 (((2nd𝑥) = 𝑦 ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) → 𝑦𝐵)
1918adantrl 478 . . . . . . . . . . . 12 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → 𝑦𝐵)
20 elsni 3640 . . . . . . . . . . . . . 14 ((1st𝑥) ∈ {𝐴} → (1st𝑥) = 𝐴)
21 eqopi 6230 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝐴 ∧ (2nd𝑥) = 𝑦)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2221ancom2s 566 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((2nd𝑥) = 𝑦 ∧ (1st𝑥) = 𝐴)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2322an12s 565 . . . . . . . . . . . . . 14 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (1st𝑥) = 𝐴)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2420, 23sylanr2 405 . . . . . . . . . . . . 13 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (1st𝑥) ∈ {𝐴})) → 𝑥 = ⟨𝐴, 𝑦⟩)
2524adantrrr 487 . . . . . . . . . . . 12 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → 𝑥 = ⟨𝐴, 𝑦⟩)
2619, 25jca 306 . . . . . . . . . . 11 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2715, 26sylan2b 287 . . . . . . . . . 10 (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2827adantl 277 . . . . . . . . 9 ((𝐴𝑉 ∧ ((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵))) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
29 fveq2 5558 . . . . . . . . . . . 12 (𝑥 = ⟨𝐴, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝑦⟩))
30 op2ndg 6209 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ V) → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
316, 30mpan2 425 . . . . . . . . . . . 12 (𝐴𝑉 → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3229, 31sylan9eqr 2251 . . . . . . . . . . 11 ((𝐴𝑉𝑥 = ⟨𝐴, 𝑦⟩) → (2nd𝑥) = 𝑦)
3332adantrl 478 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (2nd𝑥) = 𝑦)
34 simprr 531 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 = ⟨𝐴, 𝑦⟩)
35 snidg 3651 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 ∈ {𝐴})
3635adantr 276 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝐴 ∈ {𝐴})
37 simprl 529 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑦𝐵)
38 opelxpi 4695 . . . . . . . . . . . 12 ((𝐴 ∈ {𝐴} ∧ 𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
3936, 37, 38syl2anc 411 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
4034, 39eqeltrd 2273 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 ∈ ({𝐴} × 𝐵))
4133, 40jca 306 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
4228, 41impbida 596 . . . . . . . 8 (𝐴𝑉 → (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4314, 42bitr3id 194 . . . . . . 7 (𝐴𝑉 → ((𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
447, 43bitrid 192 . . . . . 6 (𝐴𝑉 → (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4544mobidv 2081 . . . . 5 (𝐴𝑉 → (∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
465, 45mpbiri 168 . . . 4 (𝐴𝑉 → ∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4746alrimiv 1888 . . 3 (𝐴𝑉 → ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
48 funcnv2 5318 . . 3 (Fun (2nd ↾ ({𝐴} × 𝐵)) ↔ ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4947, 48sylibr 134 . 2 (𝐴𝑉 → Fun (2nd ↾ ({𝐴} × 𝐵)))
50 dff1o3 5510 . 2 ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵 ↔ ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵 ∧ Fun (2nd ↾ ({𝐴} × 𝐵))))
513, 49, 50sylanbrc 417 1 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1506  ∃*wmo 2046  wcel 2167  Vcvv 2763  {csn 3622  cop 3625   class class class wbr 4033   × cxp 4661  ccnv 4662  cres 4665  Fun wfun 5252   Fn wfn 5253  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258  1st c1st 6196  2nd c2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199
This theorem is referenced by:  xpfi  6993  fsum2dlemstep  11599  fprod2dlemstep  11787
  Copyright terms: Public domain W3C validator