ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndconst GIF version

Theorem 2ndconst 6112
Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
2ndconst (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)

Proof of Theorem 2ndconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3636 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
2 fo2ndresm 6053 . . 3 (∃𝑥 𝑥 ∈ {𝐴} → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
31, 2syl 14 . 2 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
4 moeq 2854 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝐴, 𝑦
54moani 2067 . . . . 5 ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)
6 vex 2684 . . . . . . . 8 𝑦 ∈ V
76brres 4820 . . . . . . 7 (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
8 fo2nd 6049 . . . . . . . . . . 11 2nd :V–onto→V
9 fofn 5342 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 2nd Fn V
11 vex 2684 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 5455 . . . . . . . . . 10 ((2nd Fn V ∧ 𝑥 ∈ V) → ((2nd𝑥) = 𝑦𝑥2nd 𝑦))
1310, 11, 12mp2an 422 . . . . . . . . 9 ((2nd𝑥) = 𝑦𝑥2nd 𝑦)
1413anbi1i 453 . . . . . . . 8 (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
15 elxp7 6061 . . . . . . . . . . 11 (𝑥 ∈ ({𝐴} × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)))
16 eleq1 2200 . . . . . . . . . . . . . . 15 ((2nd𝑥) = 𝑦 → ((2nd𝑥) ∈ 𝐵𝑦𝐵))
1716biimpa 294 . . . . . . . . . . . . . 14 (((2nd𝑥) = 𝑦 ∧ (2nd𝑥) ∈ 𝐵) → 𝑦𝐵)
1817adantrl 469 . . . . . . . . . . . . 13 (((2nd𝑥) = 𝑦 ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) → 𝑦𝐵)
1918adantrl 469 . . . . . . . . . . . 12 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → 𝑦𝐵)
20 elsni 3540 . . . . . . . . . . . . . 14 ((1st𝑥) ∈ {𝐴} → (1st𝑥) = 𝐴)
21 eqopi 6063 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝐴 ∧ (2nd𝑥) = 𝑦)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2221ancom2s 555 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((2nd𝑥) = 𝑦 ∧ (1st𝑥) = 𝐴)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2322an12s 554 . . . . . . . . . . . . . 14 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (1st𝑥) = 𝐴)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2420, 23sylanr2 402 . . . . . . . . . . . . 13 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (1st𝑥) ∈ {𝐴})) → 𝑥 = ⟨𝐴, 𝑦⟩)
2524adantrrr 478 . . . . . . . . . . . 12 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → 𝑥 = ⟨𝐴, 𝑦⟩)
2619, 25jca 304 . . . . . . . . . . 11 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2715, 26sylan2b 285 . . . . . . . . . 10 (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2827adantl 275 . . . . . . . . 9 ((𝐴𝑉 ∧ ((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵))) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
29 fveq2 5414 . . . . . . . . . . . 12 (𝑥 = ⟨𝐴, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝑦⟩))
30 op2ndg 6042 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ V) → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
316, 30mpan2 421 . . . . . . . . . . . 12 (𝐴𝑉 → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3229, 31sylan9eqr 2192 . . . . . . . . . . 11 ((𝐴𝑉𝑥 = ⟨𝐴, 𝑦⟩) → (2nd𝑥) = 𝑦)
3332adantrl 469 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (2nd𝑥) = 𝑦)
34 simprr 521 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 = ⟨𝐴, 𝑦⟩)
35 snidg 3549 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 ∈ {𝐴})
3635adantr 274 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝐴 ∈ {𝐴})
37 simprl 520 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑦𝐵)
38 opelxpi 4566 . . . . . . . . . . . 12 ((𝐴 ∈ {𝐴} ∧ 𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
3936, 37, 38syl2anc 408 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
4034, 39eqeltrd 2214 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 ∈ ({𝐴} × 𝐵))
4133, 40jca 304 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
4228, 41impbida 585 . . . . . . . 8 (𝐴𝑉 → (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4314, 42syl5bbr 193 . . . . . . 7 (𝐴𝑉 → ((𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
447, 43syl5bb 191 . . . . . 6 (𝐴𝑉 → (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4544mobidv 2033 . . . . 5 (𝐴𝑉 → (∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
465, 45mpbiri 167 . . . 4 (𝐴𝑉 → ∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4746alrimiv 1846 . . 3 (𝐴𝑉 → ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
48 funcnv2 5178 . . 3 (Fun (2nd ↾ ({𝐴} × 𝐵)) ↔ ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4947, 48sylibr 133 . 2 (𝐴𝑉 → Fun (2nd ↾ ({𝐴} × 𝐵)))
50 dff1o3 5366 . 2 ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵 ↔ ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵 ∧ Fun (2nd ↾ ({𝐴} × 𝐵))))
513, 49, 50sylanbrc 413 1 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wex 1468  wcel 1480  ∃*wmo 1998  Vcvv 2681  {csn 3522  cop 3525   class class class wbr 3924   × cxp 4532  ccnv 4533  cres 4536  Fun wfun 5112   Fn wfn 5113  ontowfo 5116  1-1-ontowf1o 5117  cfv 5118  1st c1st 6029  2nd c2nd 6030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1st 6031  df-2nd 6032
This theorem is referenced by:  xpfi  6811  fsum2dlemstep  11196
  Copyright terms: Public domain W3C validator