ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndconst GIF version

Theorem 2ndconst 6331
Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
2ndconst (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)

Proof of Theorem 2ndconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3761 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
2 fo2ndresm 6271 . . 3 (∃𝑥 𝑥 ∈ {𝐴} → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
31, 2syl 14 . 2 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
4 moeq 2955 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝐴, 𝑦
54moani 2126 . . . . 5 ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)
6 vex 2779 . . . . . . . 8 𝑦 ∈ V
76brres 4984 . . . . . . 7 (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
8 fo2nd 6267 . . . . . . . . . . 11 2nd :V–onto→V
9 fofn 5522 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 2nd Fn V
11 vex 2779 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 5642 . . . . . . . . . 10 ((2nd Fn V ∧ 𝑥 ∈ V) → ((2nd𝑥) = 𝑦𝑥2nd 𝑦))
1310, 11, 12mp2an 426 . . . . . . . . 9 ((2nd𝑥) = 𝑦𝑥2nd 𝑦)
1413anbi1i 458 . . . . . . . 8 (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
15 elxp7 6279 . . . . . . . . . . 11 (𝑥 ∈ ({𝐴} × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)))
16 eleq1 2270 . . . . . . . . . . . . . . 15 ((2nd𝑥) = 𝑦 → ((2nd𝑥) ∈ 𝐵𝑦𝐵))
1716biimpa 296 . . . . . . . . . . . . . 14 (((2nd𝑥) = 𝑦 ∧ (2nd𝑥) ∈ 𝐵) → 𝑦𝐵)
1817adantrl 478 . . . . . . . . . . . . 13 (((2nd𝑥) = 𝑦 ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) → 𝑦𝐵)
1918adantrl 478 . . . . . . . . . . . 12 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → 𝑦𝐵)
20 elsni 3661 . . . . . . . . . . . . . 14 ((1st𝑥) ∈ {𝐴} → (1st𝑥) = 𝐴)
21 eqopi 6281 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝐴 ∧ (2nd𝑥) = 𝑦)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2221ancom2s 566 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((2nd𝑥) = 𝑦 ∧ (1st𝑥) = 𝐴)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2322an12s 565 . . . . . . . . . . . . . 14 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (1st𝑥) = 𝐴)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2420, 23sylanr2 405 . . . . . . . . . . . . 13 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (1st𝑥) ∈ {𝐴})) → 𝑥 = ⟨𝐴, 𝑦⟩)
2524adantrrr 487 . . . . . . . . . . . 12 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → 𝑥 = ⟨𝐴, 𝑦⟩)
2619, 25jca 306 . . . . . . . . . . 11 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2715, 26sylan2b 287 . . . . . . . . . 10 (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2827adantl 277 . . . . . . . . 9 ((𝐴𝑉 ∧ ((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵))) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
29 fveq2 5599 . . . . . . . . . . . 12 (𝑥 = ⟨𝐴, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝑦⟩))
30 op2ndg 6260 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ V) → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
316, 30mpan2 425 . . . . . . . . . . . 12 (𝐴𝑉 → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3229, 31sylan9eqr 2262 . . . . . . . . . . 11 ((𝐴𝑉𝑥 = ⟨𝐴, 𝑦⟩) → (2nd𝑥) = 𝑦)
3332adantrl 478 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (2nd𝑥) = 𝑦)
34 simprr 531 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 = ⟨𝐴, 𝑦⟩)
35 snidg 3672 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 ∈ {𝐴})
3635adantr 276 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝐴 ∈ {𝐴})
37 simprl 529 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑦𝐵)
38 opelxpi 4725 . . . . . . . . . . . 12 ((𝐴 ∈ {𝐴} ∧ 𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
3936, 37, 38syl2anc 411 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
4034, 39eqeltrd 2284 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 ∈ ({𝐴} × 𝐵))
4133, 40jca 306 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
4228, 41impbida 596 . . . . . . . 8 (𝐴𝑉 → (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4314, 42bitr3id 194 . . . . . . 7 (𝐴𝑉 → ((𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
447, 43bitrid 192 . . . . . 6 (𝐴𝑉 → (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4544mobidv 2091 . . . . 5 (𝐴𝑉 → (∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
465, 45mpbiri 168 . . . 4 (𝐴𝑉 → ∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4746alrimiv 1898 . . 3 (𝐴𝑉 → ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
48 funcnv2 5353 . . 3 (Fun (2nd ↾ ({𝐴} × 𝐵)) ↔ ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4947, 48sylibr 134 . 2 (𝐴𝑉 → Fun (2nd ↾ ({𝐴} × 𝐵)))
50 dff1o3 5550 . 2 ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵 ↔ ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵 ∧ Fun (2nd ↾ ({𝐴} × 𝐵))))
513, 49, 50sylanbrc 417 1 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1516  ∃*wmo 2056  wcel 2178  Vcvv 2776  {csn 3643  cop 3646   class class class wbr 4059   × cxp 4691  ccnv 4692  cres 4695  Fun wfun 5284   Fn wfn 5285  ontowfo 5288  1-1-ontowf1o 5289  cfv 5290  1st c1st 6247  2nd c2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250
This theorem is referenced by:  xpfi  7055  fsum2dlemstep  11860  fprod2dlemstep  12048
  Copyright terms: Public domain W3C validator