ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopl GIF version

Theorem ltexprlemopl 7784
Description: The lower cut of our constructed difference is open. Lemma for ltexpri 7796. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemopl ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemopl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
21ltexprlemell 7781 . . . 4 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
32simprbi 275 . . 3 (𝑞 ∈ (1st𝐶) → ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
4 19.42v 1953 . . . . . . . 8 (∃𝑦(𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ↔ (𝐴<P 𝐵 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
5 19.42v 1953 . . . . . . . . 9 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
65anbi2i 457 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
74, 6bitri 184 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
8 ltrelpr 7688 . . . . . . . . . . . . . 14 <P ⊆ (P × P)
98brel 4770 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → (𝐴P𝐵P))
109simprd 114 . . . . . . . . . . . 12 (𝐴<P 𝐵𝐵P)
11 prop 7658 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
12 prnmaxl 7671 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1311, 12sylan 283 . . . . . . . . . . . 12 ((𝐵P ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1410, 13sylan 283 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1514adantrl 478 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1615adantrl 478 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
179simpld 112 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵𝐴P)
1817ad2antrr 488 . . . . . . . . . . . . . 14 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝐴P)
19 simplrr 536 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2019simpld 112 . . . . . . . . . . . . . 14 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦 ∈ (2nd𝐴))
21 prop 7658 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
22 elprnqu 7665 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2321, 22sylan 283 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2418, 20, 23syl2anc 411 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦Q)
25 simplrl 535 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑞Q)
26 ltaddnq 7590 . . . . . . . . . . . . 13 ((𝑦Q𝑞Q) → 𝑦 <Q (𝑦 +Q 𝑞))
2724, 25, 26syl2anc 411 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦 <Q (𝑦 +Q 𝑞))
28 simprr 531 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (𝑦 +Q 𝑞) <Q 𝑠)
29 ltsonq 7581 . . . . . . . . . . . . 13 <Q Or Q
30 ltrelnq 7548 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
3129, 30sotri 5123 . . . . . . . . . . . 12 ((𝑦 <Q (𝑦 +Q 𝑞) ∧ (𝑦 +Q 𝑞) <Q 𝑠) → 𝑦 <Q 𝑠)
3227, 28, 31syl2anc 411 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦 <Q 𝑠)
3310ad2antrr 488 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝐵P)
34 simprl 529 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑠 ∈ (1st𝐵))
35 elprnql 7664 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (1st𝐵)) → 𝑠Q)
3611, 35sylan 283 . . . . . . . . . . . . 13 ((𝐵P𝑠 ∈ (1st𝐵)) → 𝑠Q)
3733, 34, 36syl2anc 411 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑠Q)
38 ltexnqq 7591 . . . . . . . . . . . 12 ((𝑦Q𝑠Q) → (𝑦 <Q 𝑠 ↔ ∃𝑟Q (𝑦 +Q 𝑟) = 𝑠))
3924, 37, 38syl2anc 411 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (𝑦 <Q 𝑠 ↔ ∃𝑟Q (𝑦 +Q 𝑟) = 𝑠))
4032, 39mpbid 147 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → ∃𝑟Q (𝑦 +Q 𝑟) = 𝑠)
41 simplrr 536 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑞) <Q 𝑠)
42 simprr 531 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑟) = 𝑠)
4341, 42breqtrrd 4110 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
4425adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑞Q)
45 simprl 529 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑟Q)
4624adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑦Q)
47 ltanqg 7583 . . . . . . . . . . . . . . 15 ((𝑞Q𝑟Q𝑦Q) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
4844, 45, 46, 47syl3anc 1271 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
4943, 48mpbird 167 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑞 <Q 𝑟)
5020adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑦 ∈ (2nd𝐴))
51 simplrl 535 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑠 ∈ (1st𝐵))
5242, 51eqeltrd 2306 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑟) ∈ (1st𝐵))
5350, 52jca 306 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))
5449, 45, 53jca32 310 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
5554expr 375 . . . . . . . . . . 11 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ 𝑟Q) → ((𝑦 +Q 𝑟) = 𝑠 → (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
5655reximdva 2632 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (∃𝑟Q (𝑦 +Q 𝑟) = 𝑠 → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
5740, 56mpd 13 . . . . . . . . 9 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
5816, 57rexlimddv 2653 . . . . . . . 8 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
5958eximi 1646 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑦𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
607, 59sylbir 135 . . . . . 6 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑦𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
61 rexcom4 2823 . . . . . 6 (∃𝑟Q𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ ∃𝑦𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6260, 61sylibr 134 . . . . 5 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
63 19.42v 1953 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
64 19.42v 1953 . . . . . . . 8 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
6564anbi2i 457 . . . . . . 7 ((𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6663, 65bitri 184 . . . . . 6 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6766rexbii 2537 . . . . 5 (∃𝑟Q𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6862, 67sylib 122 . . . 4 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
691ltexprlemell 7781 . . . . . 6 (𝑟 ∈ (1st𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
7069anbi2i 457 . . . . 5 ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
7170rexbii 2537 . . . 4 (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
7268, 71sylibr 134 . . 3 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
733, 72sylanr2 405 . 2 ((𝐴<P 𝐵 ∧ (𝑞Q𝑞 ∈ (1st𝐶))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
74733impb 1223 1 ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wrex 2509  {crab 2512  cop 3669   class class class wbr 4082  cfv 5317  (class class class)co 6000  1st c1st 6282  2nd c2nd 6283  Qcnq 7463   +Q cplq 7465   <Q cltq 7468  Pcnp 7474  <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-ltnqqs 7536  df-inp 7649  df-iltp 7653
This theorem is referenced by:  ltexprlemrnd  7788
  Copyright terms: Public domain W3C validator