Step | Hyp | Ref
| Expression |
1 | | ltexprlem.1 |
. . . . 5
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd
‘𝐵))}〉 |
2 | 1 | ltexprlemell 7539 |
. . . 4
⊢ (𝑞 ∈ (1st
‘𝐶) ↔ (𝑞 ∈ Q ∧
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) |
3 | 2 | simprbi 273 |
. . 3
⊢ (𝑞 ∈ (1st
‘𝐶) →
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵))) |
4 | | 19.42v 1894 |
. . . . . . . 8
⊢
(∃𝑦(𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ↔ (𝐴<P
𝐵 ∧ ∃𝑦(𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵))))) |
5 | | 19.42v 1894 |
. . . . . . . . 9
⊢
(∃𝑦(𝑞 ∈ Q ∧
(𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵))) ↔ (𝑞 ∈ Q ∧
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) |
6 | 5 | anbi2i 453 |
. . . . . . . 8
⊢ ((𝐴<P
𝐵 ∧ ∃𝑦(𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ↔ (𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵))))) |
7 | 4, 6 | bitri 183 |
. . . . . . 7
⊢
(∃𝑦(𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ↔ (𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵))))) |
8 | | ltrelpr 7446 |
. . . . . . . . . . . . . 14
⊢
<P ⊆ (P ×
P) |
9 | 8 | brel 4656 |
. . . . . . . . . . . . 13
⊢ (𝐴<P
𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈
P)) |
10 | 9 | simprd 113 |
. . . . . . . . . . . 12
⊢ (𝐴<P
𝐵 → 𝐵 ∈ P) |
11 | | prop 7416 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
12 | | prnmaxl 7429 |
. . . . . . . . . . . . 13
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)) →
∃𝑠 ∈
(1st ‘𝐵)(𝑦 +Q 𝑞) <Q
𝑠) |
13 | 11, 12 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ P ∧
(𝑦
+Q 𝑞) ∈ (1st ‘𝐵)) → ∃𝑠 ∈ (1st
‘𝐵)(𝑦 +Q
𝑞)
<Q 𝑠) |
14 | 10, 13 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) →
∃𝑠 ∈
(1st ‘𝐵)(𝑦 +Q 𝑞) <Q
𝑠) |
15 | 14 | adantrl 470 |
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵))) →
∃𝑠 ∈
(1st ‘𝐵)(𝑦 +Q 𝑞) <Q
𝑠) |
16 | 15 | adantrl 470 |
. . . . . . . . 9
⊢ ((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) →
∃𝑠 ∈
(1st ‘𝐵)(𝑦 +Q 𝑞) <Q
𝑠) |
17 | 9 | simpld 111 |
. . . . . . . . . . . . . . 15
⊢ (𝐴<P
𝐵 → 𝐴 ∈ P) |
18 | 17 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → 𝐴 ∈ P) |
19 | | simplrr 526 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵))) |
20 | 19 | simpld 111 |
. . . . . . . . . . . . . 14
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → 𝑦 ∈ (2nd ‘𝐴)) |
21 | | prop 7416 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
22 | | elprnqu 7423 |
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑦 ∈ (2nd
‘𝐴)) → 𝑦 ∈
Q) |
23 | 21, 22 | sylan 281 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝑦 ∈ (2nd
‘𝐴)) → 𝑦 ∈
Q) |
24 | 18, 20, 23 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → 𝑦 ∈ Q) |
25 | | simplrl 525 |
. . . . . . . . . . . . 13
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → 𝑞 ∈ Q) |
26 | | ltaddnq 7348 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Q ∧
𝑞 ∈ Q)
→ 𝑦
<Q (𝑦 +Q 𝑞)) |
27 | 24, 25, 26 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → 𝑦 <Q (𝑦 +Q
𝑞)) |
28 | | simprr 522 |
. . . . . . . . . . . 12
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → (𝑦 +Q 𝑞) <Q
𝑠) |
29 | | ltsonq 7339 |
. . . . . . . . . . . . 13
⊢
<Q Or Q |
30 | | ltrelnq 7306 |
. . . . . . . . . . . . 13
⊢
<Q ⊆ (Q ×
Q) |
31 | 29, 30 | sotri 4999 |
. . . . . . . . . . . 12
⊢ ((𝑦 <Q
(𝑦
+Q 𝑞) ∧ (𝑦 +Q 𝑞) <Q
𝑠) → 𝑦 <Q
𝑠) |
32 | 27, 28, 31 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → 𝑦 <Q 𝑠) |
33 | 10 | ad2antrr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → 𝐵 ∈ P) |
34 | | simprl 521 |
. . . . . . . . . . . . 13
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → 𝑠 ∈ (1st ‘𝐵)) |
35 | | elprnql 7422 |
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑠 ∈ (1st
‘𝐵)) → 𝑠 ∈
Q) |
36 | 11, 35 | sylan 281 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ P ∧
𝑠 ∈ (1st
‘𝐵)) → 𝑠 ∈
Q) |
37 | 33, 34, 36 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → 𝑠 ∈ Q) |
38 | | ltexnqq 7349 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Q ∧
𝑠 ∈ Q)
→ (𝑦
<Q 𝑠 ↔ ∃𝑟 ∈ Q (𝑦 +Q 𝑟) = 𝑠)) |
39 | 24, 37, 38 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → (𝑦 <Q 𝑠 ↔ ∃𝑟 ∈ Q (𝑦 +Q
𝑟) = 𝑠)) |
40 | 32, 39 | mpbid 146 |
. . . . . . . . . 10
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → ∃𝑟 ∈ Q (𝑦 +Q 𝑟) = 𝑠) |
41 | | simplrr 526 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → (𝑦 +Q 𝑞) <Q
𝑠) |
42 | | simprr 522 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → (𝑦 +Q 𝑟) = 𝑠) |
43 | 41, 42 | breqtrrd 4010 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → (𝑦 +Q 𝑞) <Q
(𝑦
+Q 𝑟)) |
44 | 25 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → 𝑞 ∈ Q) |
45 | | simprl 521 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → 𝑟 ∈ Q) |
46 | 24 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → 𝑦 ∈ Q) |
47 | | ltanqg 7341 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ Q ∧
𝑟 ∈ Q
∧ 𝑦 ∈
Q) → (𝑞
<Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q
(𝑦
+Q 𝑟))) |
48 | 44, 45, 46, 47 | syl3anc 1228 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q
(𝑦
+Q 𝑟))) |
49 | 43, 48 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → 𝑞 <Q 𝑟) |
50 | 20 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → 𝑦 ∈ (2nd ‘𝐴)) |
51 | | simplrl 525 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → 𝑠 ∈ (1st ‘𝐵)) |
52 | 42, 51 | eqeltrd 2243 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → (𝑦 +Q 𝑟) ∈ (1st
‘𝐵)) |
53 | 50, 52 | jca 304 |
. . . . . . . . . . . . 13
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st
‘𝐵))) |
54 | 49, 45, 53 | jca32 308 |
. . . . . . . . . . . 12
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ (𝑟 ∈ Q ∧ (𝑦 +Q
𝑟) = 𝑠)) → (𝑞 <Q 𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵))))) |
55 | 54 | expr 373 |
. . . . . . . . . . 11
⊢ ((((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) ∧ 𝑟 ∈ Q) → ((𝑦 +Q
𝑟) = 𝑠 → (𝑞 <Q 𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵)))))) |
56 | 55 | reximdva 2568 |
. . . . . . . . . 10
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → (∃𝑟 ∈ Q (𝑦 +Q 𝑟) = 𝑠 → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵)))))) |
57 | 40, 56 | mpd 13 |
. . . . . . . . 9
⊢ (((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) ∧ (𝑠 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞)
<Q 𝑠)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵))))) |
58 | 16, 57 | rexlimddv 2588 |
. . . . . . . 8
⊢ ((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) →
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵))))) |
59 | 58 | eximi 1588 |
. . . . . . 7
⊢
(∃𝑦(𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) →
∃𝑦∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵))))) |
60 | 7, 59 | sylbir 134 |
. . . . . 6
⊢ ((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) →
∃𝑦∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵))))) |
61 | | rexcom4 2749 |
. . . . . 6
⊢
(∃𝑟 ∈
Q ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵)))) ↔
∃𝑦∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵))))) |
62 | 60, 61 | sylibr 133 |
. . . . 5
⊢ ((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) →
∃𝑟 ∈
Q ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵))))) |
63 | | 19.42v 1894 |
. . . . . . 7
⊢
(∃𝑦(𝑞 <Q
𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵)))) ↔ (𝑞 <Q
𝑟 ∧ ∃𝑦(𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵))))) |
64 | | 19.42v 1894 |
. . . . . . . 8
⊢
(∃𝑦(𝑟 ∈ Q ∧
(𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵))) ↔ (𝑟 ∈ Q ∧
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st
‘𝐵)))) |
65 | 64 | anbi2i 453 |
. . . . . . 7
⊢ ((𝑞 <Q
𝑟 ∧ ∃𝑦(𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵)))) ↔ (𝑞 <Q
𝑟 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st
‘𝐵))))) |
66 | 63, 65 | bitri 183 |
. . . . . 6
⊢
(∃𝑦(𝑞 <Q
𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵)))) ↔ (𝑞 <Q
𝑟 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st
‘𝐵))))) |
67 | 66 | rexbii 2473 |
. . . . 5
⊢
(∃𝑟 ∈
Q ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (1st
‘𝐵)))) ↔
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st
‘𝐵))))) |
68 | 62, 67 | sylib 121 |
. . . 4
⊢ ((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) →
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st
‘𝐵))))) |
69 | 1 | ltexprlemell 7539 |
. . . . . 6
⊢ (𝑟 ∈ (1st
‘𝐶) ↔ (𝑟 ∈ Q ∧
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st
‘𝐵)))) |
70 | 69 | anbi2i 453 |
. . . . 5
⊢ ((𝑞 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐶)) ↔ (𝑞 <Q 𝑟 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st
‘𝐵))))) |
71 | 70 | rexbii 2473 |
. . . 4
⊢
(∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶)) ↔ ∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st
‘𝐵))))) |
72 | 68, 71 | sylibr 133 |
. . 3
⊢ ((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) →
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) |
73 | 3, 72 | sylanr2 403 |
. 2
⊢ ((𝐴<P
𝐵 ∧ (𝑞 ∈ Q ∧ 𝑞 ∈ (1st
‘𝐶))) →
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) |
74 | 73 | 3impb 1189 |
1
⊢ ((𝐴<P
𝐵 ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st
‘𝐶)) →
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) |