ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopl GIF version

Theorem ltexprlemopl 7542
Description: The lower cut of our constructed difference is open. Lemma for ltexpri 7554. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemopl ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemopl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
21ltexprlemell 7539 . . . 4 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
32simprbi 273 . . 3 (𝑞 ∈ (1st𝐶) → ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
4 19.42v 1894 . . . . . . . 8 (∃𝑦(𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ↔ (𝐴<P 𝐵 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
5 19.42v 1894 . . . . . . . . 9 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
65anbi2i 453 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
74, 6bitri 183 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
8 ltrelpr 7446 . . . . . . . . . . . . . 14 <P ⊆ (P × P)
98brel 4656 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → (𝐴P𝐵P))
109simprd 113 . . . . . . . . . . . 12 (𝐴<P 𝐵𝐵P)
11 prop 7416 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
12 prnmaxl 7429 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1311, 12sylan 281 . . . . . . . . . . . 12 ((𝐵P ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1410, 13sylan 281 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1514adantrl 470 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1615adantrl 470 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
179simpld 111 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵𝐴P)
1817ad2antrr 480 . . . . . . . . . . . . . 14 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝐴P)
19 simplrr 526 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2019simpld 111 . . . . . . . . . . . . . 14 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦 ∈ (2nd𝐴))
21 prop 7416 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
22 elprnqu 7423 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2321, 22sylan 281 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2418, 20, 23syl2anc 409 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦Q)
25 simplrl 525 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑞Q)
26 ltaddnq 7348 . . . . . . . . . . . . 13 ((𝑦Q𝑞Q) → 𝑦 <Q (𝑦 +Q 𝑞))
2724, 25, 26syl2anc 409 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦 <Q (𝑦 +Q 𝑞))
28 simprr 522 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (𝑦 +Q 𝑞) <Q 𝑠)
29 ltsonq 7339 . . . . . . . . . . . . 13 <Q Or Q
30 ltrelnq 7306 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
3129, 30sotri 4999 . . . . . . . . . . . 12 ((𝑦 <Q (𝑦 +Q 𝑞) ∧ (𝑦 +Q 𝑞) <Q 𝑠) → 𝑦 <Q 𝑠)
3227, 28, 31syl2anc 409 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦 <Q 𝑠)
3310ad2antrr 480 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝐵P)
34 simprl 521 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑠 ∈ (1st𝐵))
35 elprnql 7422 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (1st𝐵)) → 𝑠Q)
3611, 35sylan 281 . . . . . . . . . . . . 13 ((𝐵P𝑠 ∈ (1st𝐵)) → 𝑠Q)
3733, 34, 36syl2anc 409 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑠Q)
38 ltexnqq 7349 . . . . . . . . . . . 12 ((𝑦Q𝑠Q) → (𝑦 <Q 𝑠 ↔ ∃𝑟Q (𝑦 +Q 𝑟) = 𝑠))
3924, 37, 38syl2anc 409 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (𝑦 <Q 𝑠 ↔ ∃𝑟Q (𝑦 +Q 𝑟) = 𝑠))
4032, 39mpbid 146 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → ∃𝑟Q (𝑦 +Q 𝑟) = 𝑠)
41 simplrr 526 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑞) <Q 𝑠)
42 simprr 522 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑟) = 𝑠)
4341, 42breqtrrd 4010 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
4425adantr 274 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑞Q)
45 simprl 521 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑟Q)
4624adantr 274 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑦Q)
47 ltanqg 7341 . . . . . . . . . . . . . . 15 ((𝑞Q𝑟Q𝑦Q) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
4844, 45, 46, 47syl3anc 1228 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
4943, 48mpbird 166 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑞 <Q 𝑟)
5020adantr 274 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑦 ∈ (2nd𝐴))
51 simplrl 525 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑠 ∈ (1st𝐵))
5242, 51eqeltrd 2243 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑟) ∈ (1st𝐵))
5350, 52jca 304 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))
5449, 45, 53jca32 308 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
5554expr 373 . . . . . . . . . . 11 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ 𝑟Q) → ((𝑦 +Q 𝑟) = 𝑠 → (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
5655reximdva 2568 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (∃𝑟Q (𝑦 +Q 𝑟) = 𝑠 → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
5740, 56mpd 13 . . . . . . . . 9 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
5816, 57rexlimddv 2588 . . . . . . . 8 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
5958eximi 1588 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑦𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
607, 59sylbir 134 . . . . . 6 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑦𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
61 rexcom4 2749 . . . . . 6 (∃𝑟Q𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ ∃𝑦𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6260, 61sylibr 133 . . . . 5 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
63 19.42v 1894 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
64 19.42v 1894 . . . . . . . 8 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
6564anbi2i 453 . . . . . . 7 ((𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6663, 65bitri 183 . . . . . 6 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6766rexbii 2473 . . . . 5 (∃𝑟Q𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6862, 67sylib 121 . . . 4 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
691ltexprlemell 7539 . . . . . 6 (𝑟 ∈ (1st𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
7069anbi2i 453 . . . . 5 ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
7170rexbii 2473 . . . 4 (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
7268, 71sylibr 133 . . 3 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
733, 72sylanr2 403 . 2 ((𝐴<P 𝐵 ∧ (𝑞Q𝑞 ∈ (1st𝐶))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
74733impb 1189 1 ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wex 1480  wcel 2136  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   +Q cplq 7223   <Q cltq 7226  Pcnp 7232  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-ltnqqs 7294  df-inp 7407  df-iltp 7411
This theorem is referenced by:  ltexprlemrnd  7546
  Copyright terms: Public domain W3C validator